首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Gold-fullerite [C60]-silicon (p-type) sandwich structures have been fabricated in order to investigate intrinsic cross-sectional and planar electronic conductive properties, in particular the C60/p-Si p–n heterojunction. The turn-on voltage of this p–n heterojunction lies in the range 0.25–0.27 V. The I–V characteristics of the Au/C60/p-Si structure are mostly defined by the bulk specific resistance of the fullerite crystal film itself (6×107 Ω cm). I–V curves in the C60/Au/p-Si structure are shown to be ohmic. Au/C60/p-Si sandwiches irradiated with swift (300 MeV) heavy ions, (84Kr14+) to a total fluence 1010 ion/cm2 yield structures which are sensitive to ambient air pressure, specifically in the case of a transverse contact configuration, and if one of the contacts is located on the irradiated part of the fullerite film. The sandwich-structure sensitivity to pressure is 5×10−6 Pa−1. This exceeds the sensitivity of conventional silicon pressure transducers by almost three orders of magnitude.  相似文献   

2.
Swift heavy ions (SHI) with electronic energy loss exceeding a value of 14.4 keVnm−1 create amorphized latent tracks in YBCO type superconductors. In the low fluence regime of an ion beam where tracks do not overlap, a decrease of the superconducting transition temperature as probed through resistivity studies, is not expected due to availability of percolating current paths. The present study however shows Tc decrease by about 1–3 K in thin films of YBCO when irradiated by 250 MeVAg ions at 79 K at a fluence of 5×1010–1×1012 ionscm−2. The highest fluence used in the present study is three times less than the fluence where track overlapping becomes significant. The Tc tends to increase towards the preirradiation value on annealing the films at room temperature. To explain this unusual result, we consider the effect of ion irradiation in inducing materials modification not only through creation of amorphized latent tracks along the ion path, but also through creation of atomic disorder in the oxygen sublattice in the Cu–O chains of YBCO by the secondary electrons. These electrons are emitted radially from the tracks during the passage of the SHI. Considering the correlation between the charge state of copper and its oxygen coordination, we show in particular that the latter process is a consequence of the inelastic interaction of the SHI induced low-energy secondary electrons with the YBCO lattice, which result in chain oxygen disorder and Tc decrease.  相似文献   

3.
Electron paramagnetic resonance (EPR) measurements have been used to characterise Er complexes formed in FZ silicon by the implantation of erbium together with either oxygen or fluorine. The samples have a 2 μm thick layer containing 1019 Er/cm3 alone or in addition 3×1019 O/cm3, 1020 O/cm3 or 1020 F/cm3. Various post-implantation anneals were carried out. Several different erbium centres, which have either C1h monoclinic or trigonal symmetry, are observed and the way in which the type of centre depends on the implantation and annealing conditions is reported.  相似文献   

4.
Silicon nanocrystals have been synthesized in SiO2 matrix using Si ion implantation. Si ions were implanted into 300-nm-thick SiO2 films grown on crystalline Si at energies of 30–55 keV, and with doses of 5×1015, 3×1016, and 1×1017 cm−2. Implanted samples were subsequently annealed in an N2 ambient at 500–1100°C during various periods. Photoluminescence spectra for the sample implanted with 1×1017 cm−2 at 55 keV show that red luminescence (750 nm) related to Si-nanocrystals clearly increases with annealing temperature and time in intensity, and that weak orange luminescence (600 nm) is observed after annealing at low temperatures of 500°C and 800°C. The luminescence around 600 nm becomes very intense when a thin SiO2 sample is implanted at a substrate temperature of 400°C with an energy of 30 keV and a low dose of 5×1015 cm−2. It vanishes after annealing at 800°C for 30 min. We conclude that this luminescence observed around 600 nm is caused by some radiative defects formed in Si-implanted SiO2.  相似文献   

5.
High purity molybdenum was implanted by C ion in a metal vapour vacuum arc (MEVVA) implanter. The influence of implantation parameters was studied by varying ion fluence and ion current density. The samples were implanted by 45 keV C ion with fluences from 1×1015 to 1×1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and nanoindenter. Different morphologies were observed on the surfaces of the as-implanted samples due to irradiation damage, and clearly related to implantation parameters. XRD spectra confirm formation of β-Mo2C with ion fluences equal to or larger than 1×1016 ions/cm2, and formation of -Mo2C with ion fluence of 1×1018 ions/cm2. The maximum nanohardness and maximum modulus of the as-implanted samples increased gradually with increasing ion fluence, and reached the corresponding maximum values with ion fluence of 1×1018 ions/cm2. The experimental results suggest that the structure and properties of the as-implanted Mo samples exhibited strong dependence on implantation parameters.  相似文献   

6.
In this work, the investigation of the interface states density and series resistance from capacitance–voltage (CV) and conductance–voltage (GV) characteristics in Au/SnO2/n-Si (MOS) structures prepared at various SnO2 layer thicknesses by spray deposition technique have been reported. It is fabricated five samples depending on deposition time. The thicknesses of SnO2 films obtained from the measurement of the oxide capacitance in the strong accumulation region for MOS Schottky diodes are 37, 79, 274, 401, and 446 Å, for D1, D2, D3, D4, and D5 samples, respectively. The CV and GV measurements of Au/SnO2/n-Si MOS structures are performed in the voltage range from −6 to +10 V and the frequency range from 500 Hz to 10 MHz at room temperature. It is observed that peaks in the forward CV characteristics appeared because of the series resistance. It has been seen that the value of the series resistance Rs of samples D1 (47 Ω), D2 (64 Ω), D3 (98 Ω), D4 (151 Ω), and D5 (163 Ω) increases with increasing the oxide layer thickness. The interface state density Dit ranges from 2.40×1013 cm−2 eV−1 for D1 sample to 2.73×1012 cm−2 eV−1 for D5 sample and increases with increasing the oxide layer thickness.  相似文献   

7.
An experiment has been performed for measuring a nonlinear refractive index that is due to the polarizability difference ΔP between excited (4T2) and ground (4A2) states in a Cr3+:LiSAF crystal at λ = 647 nm. The latter one is responsible for a population lensing effect which has been monitored by using the eclipsing Z-scan technique. We have performed a data analysis that allows to distinguish between thermal and population contributions to the lensing effect. We have found ΔP = 4.6 × 10−25 cm3 which is in a good agreement with our previous measurements with a different technique.  相似文献   

8.
ZnO:Ag films have been fabricated on a n-Si (1 1 1) substrate and then annealed in situ in an O2 ambient, using Ag2O as a silver dopant by pulsed laser deposition. Hall measurements reveal that the films prepared at 400 and 450 °C show p-type behavior with a hole concentration of 6.3×1016–1.2×1017 cm–3 and a mobility of 2.48–3.30 cm2/V s. By combining Hall measurements, electron paramagnetic resonance (EPR) signals, and photoluminescence (PL) spectra, a correlation is observed between the free hole carriers, the Ag2+ centers, and the neutral acceptor bound excitons. Additionally, the p-ZnO:Ag/n-Si heterojunction shows a diode-like I–V characteristic.  相似文献   

9.
Reversible and irreversible domain wall (DW) motions have been investigated in La0.7Sr0.3MnO3 ceramic samples using frequency-response complex permeability with various amplitudes of AC field. We also examine the effects of temperature in the range from 293 to 368 K and transverse DC magnetic field with a maximum of 4.40×105 A/m on the real part of permeability (μ′). Two relaxations corresponding to reversible wall motions and domain rotations occur in low and high frequency regions, respectively. The irreversible DW displacements can be activated as the amplitude larger than the pinning field of 3 A/m, leading to an increase in μ′. The μ′ obeys a Rayleigh law at the temperature below 343 K or under DC field of less than 4.22×104 A/m. The Rayleigh constant η increases from 5.45×10−2 to 1.54×10−1 (A/m)−1 as the temperature rises from 293 to 343 K, and η decreases from 5.58×10−2 to 3.67×10−2 (A/m)−1 with increasing DC field from 1.99×103 to 4.22×104 A/m.  相似文献   

10.
We report on the BCC to FCC/HCP structural transformation of Co70Fe30 alloy produced by room temperature ion irradiation of Co70Fe30/Cu discontinuous multilayers. The structural changes were analyzed by X-ray diffraction and X-ray absorption spectroscopy. For this study, two different samples were examined, one irradiated with 50 keV He+ and another with 600 keV Kr+ with doses of 1×1017 and 3×1015 ions/cm2, respectively. No substantial change is observed after He+ irradiation, while after Kr+ irradiation an unexpected structural transition from BCC to FCC/HCP closed packed of the Co70Fe30 alloy was found.  相似文献   

11.
Mn/p-Si structures have been realised by electron beam evaporation of manganese on etched and cleaned p-Si wafers. Bilayer structures have been irradiated by swift heavy ions (of 100 MeV Fe7+ having a fluence of 1 × 1013 ions/cm2). The electronic transport features across the bilayer of the structure (i.e. IV characteristics across the Mn/p-Si interface) show a significant increase of current (by two orders of magnitude) for the irradiated ones as compared to un-irradiated ones. IV characteristics across the interface has also been recorded in presence of in-plane (i.e., along the plane of the interface) magnetic field which show a significant magnetic field sensitivity for the irradiated ones. The surface morphological studies from AFM show a granular structure with open face having micro-particles in it, prior to the irradiation and round shaped embedded granular structure after the irradiation. XRD data show the formation of manganese silicide (Mn5Si2). The results are understood in the realm of interfacial intermixing which is tailored by the swift heavy ion irradiation.  相似文献   

12.
J.-W. He  P.R. Norton   《Surface science》1990,230(1-3):150-158
The co-adsorption of oxygen and deuterium at 100 K on a Pd(110) surface has been studied by measurements of the change in work function (Δφ) and by thermal desorption spectroscopy (TDS). When the surface with co-adsorbed species is heated, the adsorbates O and D react to form D2O which desorbs from the surface at T > 200 K. The D2O desorption peaks shift continuously to lower temperatures as the surface D coverage (θD) increases. The maximum production of D2O is estimated to be 0.26 ML (1 ML = 9.5 × 1014 atoms cm−2), resulting from reaction in a layer containing 0.65 ML D and 0.3 ML O. The maximum work function increase caused by adsorption of D to saturation onto oxygen precovered Pd(110) decreases almost linearly with ΔφO of the oxygen precovered surface. On a surface with pre-adsorbed D however, the maximum Δφ increase contributed by oxygen adsorption decreases abruptly at ΔφD > 200 mV. This sharp change occurs at θD > 1 ML and is believed to be associated with the development of the reconstructed (1 × 2) phase of D/Pd(110).  相似文献   

13.
To understand the electron irradiation effects on polymers, a polyesterurethane (ESPU) was irradiated by a 200 keV electron beam perpendicular to the surface under a vacuum of 0.04 Torr with electron fluxes of 0.25–1.25×1013 s−1 on the irradiated zone. To perform a study of ESPU degradation versus the electron's penetration depth, a stratified structure was made with seventeen 30-μm-thick films. The irradiation was performed at both room temperature (293 K) and 77 K. The applied fluence was in the range of 1014–1017 cm−2. Chemical transformations, such as degradation and oxidation, are studied by FTIR, by following NH and OH bond evolution, and by UV spectroscopy, by following the absorbance shift towards the visible region. These effects are analyzed versus depth, fluence and electron flux. Structural transformations are also characterized by GPC for soluble samples. An increase of crosslinking rate of the polymer is observed and analyzed.  相似文献   

14.
Bi2Sr2CaCu2Ox tapes were irradiated using 230 MeV Au14+ ions. Columnar defects were presumably produced due to irradiation. Zero-field-cooling (ZFC) magnetization increased up to a fluence of 1.6 × 1011 Au+/cm2, but field-cooling (FC) magnetization decreased, indicating the strong pinning effects resulting from the columnar defects. The critical current density as well as the irreversibility field, obtained from the hysteresis loops, were enhanced. Irreversibility fields are fitted by Hirr = A exp(−T/TA). An effective activation energy for flux motion was obtained from the measurements of magnetization relaxation. The features of flux pinning as a result of the columnar defects were compared with those of point defects brought about by 120 MeV O7+ irradiation.  相似文献   

15.
This paper is devoted to the study of the electrical properties of nanocrystalline tin oxide dispersed in the mesoporous silica. By immersing the silica in precursor solutions with different concentrations and heat-treatment, different samples were obtained. With precursor concentrations increasing from 0.1 to 4.0 M, the resistivities of the samples decrease from 3.15×106 to 2.43×103 Ω cm. The resistivity changes with the measurement time, and the deviations from Ohm's law in the voltage–current (VI) measurements illustrate the capacitance property of these nanocomposites. For this new kind of nanocomposites, the obtained results provide experimental evidence of the conducting mechanism for tin oxide nanoparticles.  相似文献   

16.
Mn2+-doped CdS nanocrystals have been synthesized by adopting an aqueous solution precipitation method. These nanocrystals have been studied using X-ray diffraction (XRD), X-ray fluorescence (XRF), optical absorbance, photoluminescence (PL), DC electrical conductivity measurements and positron annihilation lifetime spectroscopy (PALS). The system has been found to be in the hexagonal phase. PL spectra have been studied on most prominent exciton peaks within the wavelength range (586–731 nm). The emission intensity is found to increase on increasing Mn2+ ion concentration (0–5%). Electrical conductivity lies within 0.819×10−6 to 1.69×10−6 Ω−1 m−1 and the system shows power law dependence for n=3–3.77. The Cd vacancies concentration has been found to decrease on increasing Mn%.  相似文献   

17.
In this paper, the high-order perturbation formulas of spin-Hamiltonian (SH) parameters (g factors g, g and zero-field splitting D), including both the crystal-field (CF) and for the first time charge-transfer (CT) mechanisms, are established for 3d8 ions in trigonal octahedral clusters. By using these formulas, the SH parameters of Ni2+ ions in CsMgX3 (X=Cl, Br, I) crystals are calculated. The results are consistent with the experimental values. The calculations suggest that the sign of QCT (Qg, Δg or D, where the g-shift Δgi=gige, ge≈2.0023 is the value of free-electron) due to CT mechanism is the same as that of the corresponding QCF due to CF mechanism, and the relative importance of CT mechanism (characterized by QCT/QCF) increases with the increasing atomic number of ligand X. So, for the 3dn MLm clusters with ligand having large atomic number, the reasonable theoretical explanations of all SH parameters should take both CF and CT mechanisms into account. The defect structure of (NiX6)4− impurity centers in CsMgX3:Ni2+ crystals is also considered in our model.  相似文献   

18.
The growth of epitaxial InBixAsySb(1−xy) layers on highly lattice mis-matched semi-insulating GaAs substrates has been successfully achieved via the traditional liquid phase epitaxy. Orientation and single crystalline nature of the film have been confirmed by X-ray diffraction. Scanning electron micrograph shows abrupt interface at micrometer resolution. Surface composition of Bi(x) and As(y) in the InBixAsySb(1−xy) film was measured using energy dispersive X-ray analysis and found to be 2.5 and 10.5 at.%, respectively, and was further confirmed with X-ray photoelectron spectroscopy. Variation of the composition with depth of the film was studied by removing the layers with low current (20 μA) Ar+ etching. It was observed that with successive Ar+ etching, In/Sb ratio remained the same, while the As/Sb and Bi/Sb ratios changed slightly with etching time. However after about 5 min etching the As/Sb and Bi/Sb ratios reached constant values. The room temperature band gap of InBi0.025As0.105Sb0.870 was found to be in the range of 0.113–0.120 eV. The measured values of mobility and carrier density at room temperature are 3.1×104 cm2 V−1 s−1 and 8.07×1016 cm−3, respectively.  相似文献   

19.
Thin films of titanium dioxide have been deposited on strained Si0.82Ge0.18 epitaxial layers using titanium tetrakis-isopropoxide [TTIP, Ti(O-i-C3H7)4] and oxygen by microwave plasma enhanced chemical vapor deposition (PECVD). The films have been characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Dielectric constant, equivalent oxide thickness (EOT), interface state density (Dit), fixed oxide charge density (Qf/q) and flat-band voltage (VFB) of as-deposited films were found to be 13.2, 40.6 Å, 6×1011 eV−1 cm−2, 3.1×1011 cm−2 and −1.4 V, respectively. The capacitance–voltage (CV), current–voltage (IV) characteristics and charge trapping behavior of the films under constant current stressing exhibit an excellent interface quality and high dielectric reliability making the films suitable for microelectronic applications.  相似文献   

20.
We present extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) analyses of Er–O and Er–F co-doped Si. Samples were prepared by multiple implants at 77 K of Er and co-dopant (O or F) ions resulting in the formation of a2 μm thick amorphous layer uniformly doped with 1×1019 Er/cm3 and 3×1019 O/cm3, 1×1020 O/cm3 or 1×1020 F/cm3. EXAFS measurements show that the local environment of the Er sites in the amorphous layers consists of 6 Si first neighbors. After epitaxial regrowth at 620°C for 3 h, Er is fully coordinated with 8 F ions in the Er–F samples, while Si and O ions are concomitantly present in the first shell of O co-doped samples. Post regrowth thermal treatments at 900°C leave the coordination unchanged in the Er+F, while the Er+O (ratio 1 : 10) doped samples present Er sites with a fully O coordinated shell with an average of 5 O atoms and 4 O atoms after 30 s and 12 h, respectively. We have also found that the fine structure and intensity of the high-resolution PL spectra are strongly dependent on the Er-impurity ratio and on thermal process parameters in the Er–O co-doped samples, while this is not observed for the F-doped samples. The most intense PL response at 15 K was obtained for the 1 : 3 E : O ratio, suggesting that an incomplete O shell around Er is particularly suitable for optical excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号