首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Solid State Ionics》2006,177(19-25):1691-1695
Li3InBr6 undergoes a phase transition to a superionic phase at 314 K associated with a steep increase of the conductivity (σ = 4 × 10− 3 Scm 1 at 330 K). This superionic phase is isomorphous with Li3InCl6 in which a positional disorder at the In3+ site is introduced. A pseudo cubic-close-packing of the bromide ions is formed in this phase. On the other hand, a new superionic phase of LiInBr4 was found above ca 315 K and its structure was confirmed to be a defect spinel. The dynamic properties of the cations in these two superionic phases were investigated by 7Li and 115In NMR spectroscopy.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2601-2603
New Li+ ion-conductive glasses Li2S–B2S3–Li4SiO4 were synthesized by rapid quenching, and they were transformed into glass ceramics by heat treatment. The heat treatment increased the ionic conductivities of the Li4SiO4-doped glasses, and the highest ionic conductivity observed in the system was 1.0 × 10 3 S cm 1 at room temperature. The glass ceramics were highly stable against electrochemical oxidation with a wide electrochemical window of 10 V.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2721-2725
Highly ion-conductive Li2S–P2S5 glass-ceramic electrolytes were prepared by controlling the compositions and heat treatment temperatures of the glasses. The 70Li2S·30P2S5 (mol%) glass-ceramic heated at 360 °C showed the highest conductivity of 3.2 × 10 3 S cm 1 at room temperature and the lowest activation energy of 12 kJ mol 1 for conduction in the binary system Li2S–P2S5. The outstanding property was attributed to both the precipitation of the new crystal as a metastable phase and the increase in crystallinity of the phase. With increasing heat treatment temperatures, the metastable phase changed into thermodynamically stable phases such as the Li4P2S6 crystal by heat treatment up to 550 °C, resulting in low conductivities of the glass-ceramics. It was, thus, found that the formation of superionic metastable phases by heating the Li2S–P2S5 glasses is responsible for the marked enhancement on the conducting properties of the glass-ceramics.  相似文献   

4.
The title compound C6H5CH2C5H4NH+·HSeO4 crystallizes in the orthorhombic system with the space group Pbca and the following unit cell dimensions: a=27.449(5) Å; b=10.821(6) Å and c=8.830(1) Å.The structure consists of infinite parallel two-dimensional planes built of HSeO4 anions and C6H5CH2C5H4NH+ cations mutually.Differential scanning calorimetry study on 4-benzylpyridinium monohydrogen-selenate was carried out. A high temperature second order phase transition at 363 K was found and characterized by electric measurements. The Raman of polycrystalline sample has been recorded at different temperature between 297 and 373 K.The conductivity relaxation parameters associated with some H+ conduction have been determined from an analysis of the M′′/M′′max spectrum measured in a wide temperature range. An appearance of the superionic phase transition in 4-BSe is closely related to a liberation or even a rotation increase of HSeO4 groups with heating.  相似文献   

5.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

6.
《Solid State Ionics》2006,177(9-10):821-826
The temperature dependence of the spin-lattice relaxation time, T1 and the line width of the 7Li nucleus were measured in delithiated LixCoO2 (x = 0.6, 0.8, 1.0). Two different relaxation behaviors were observed in the temperature dependence of T1 1 in a x = 0.8 sample. These would have arisen from inequivalent Li sites in two coexisting phases; an original hexagonal (HEX-I) and a modified hexagonal (HEX-II) phase in the x = 0.8 sample. We analyzed using a phenomenological non Debye-type relaxation model. Motional narrowing in the line width was observed in each sample, the result revealing that Li+ ions begin to move at low temperature in samples with less Li content. It was found that the activation energy associating with Li+ ion hopping in the HEX-II phase is smaller than that in the HEX-I phase. These results show that the HEX-II phase produced in the Li deintercalation process would be suitable for Li+ ionic diffusion in multi-phase LixCoO2, and it is expected that this would enable fast ionic diffusion. Li+ ionic diffusion related to phase transition is discussed from 7Li NMR results.  相似文献   

7.
《Solid State Ionics》2006,177(1-2):129-135
LixV2O5 (0.4 < x < 1.4) prepared by solid-state reaction were studied by 7Li and 51V NMR spectroscopy. 7Li NMR spectra showed a narrowing of the line width in relation to Li+ionic diffusion. Analysis of LixV2O5 using a Debye-type relaxation model showed a low activation energy ∼0.07 eV in the sample of x = 0.4 below room temperature, and revealed a Li+ionic diffusion with larger activation energy ∼0.5 eV above 450 K in lithium-rich samples. The latter is ascribed to the existence of a multi-phase system comprising stable ɛ- and γ-phases, resulting from complicated phase transitions at high temperature. These shapes and shifts enable the classification of the β-, ɛ-, δ-, and γ-phases. The ionic diffusion of Li+ ions is discussed in relation to the complicated phase transitions.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2407-2411
Electrical conduction of Sr-doped LaP3O9 ([Sr]/{[La] + [Sr]} = 2–10 mol%) was investigated under 0.4–5 kPa of p(H2O) and 0.01–100 kPa of p(O2) or 0.3–3 kPa of p(H2) at 573–973 K. Sr-doped LaP3O9 showed apparent H/D isotope effect on conductivity regardless of the Sr-doping level under both H2O/O2 oxidizing and H2/H2O reducing conditions at investigated temperatures. Conductivities of the material were almost independent of p(O2) and p(H2O). These results demonstrated that the Sr-doped LaP3O9 exhibited protonic conduction under wide ranges of p(O2), p(H2O) and temperature. The conductivity of the Sr-doped LaP3O9 increased with increasing Sr concentration up to its solubility limit, ca. 3 mol%, while the further Sr-doping slightly degraded the conductivity. These indicate that Sr2+ substitution for La3+ leads to proton dissolution into the material and induced protonic conduction. Conductivities of the 3 mol% Sr-doped sample were 2 × 10- 6–5 × 10 4 S cm 1 at 573–973 K.  相似文献   

9.
《Solid State Ionics》2006,177(1-2):121-127
Lithium cobalt vanadate LixCoVO4 (x = 0.8; 1.0; 1.2) has been prepared by a solid state reaction method. The XRD analysis confirms the formation of the sample. A new peak has been observed for Li1.0CoVO4 and for Li1.2CoVO4 indicating the formation of a new phase. The XPS analysis indicates the reduction in the oxidation of vanadium and oxygen with the addition of Li in LixCoVO4 (x = 0.8, 1.0, 1.2). The impedance analysis gives the conductivity value as 2.46 × 10 5, 6.16 × 10 5, 9 × 10 5 Ω 1 cm 1 for LixCoVO4 (x = 0.8; 1.0; 1.2), all at 623 K. The similarity in the bulk activation energy (Ea) and the activation enthalpy for migration of ions (Eω) indicate that the conduction in Li1.2CoVO4 has been due to hopping mechanism.  相似文献   

10.
《Solid State Ionics》2006,177(26-32):2611-2615
Mechanical milling (MM) has been used to prepare the nanosized Li1.4Al0.4Ti1.6(PO4)3 (denoted LATP) glassy powders, which was converted into glass-ceramics through thermal treating at 700–1000 °C. The XRD, TEM, FESEM and ac impedance techniques were used to characterize the products. The results showed that completely amorphous products were prepared by MM for 40 h, and single-phase LiTi2(PO4)3-type structured glass-ceramics were obtained by further heat treatment. The lithium ion conductivity of the glass-ceramics increased with the growth of the crystalline phase and decrease of the grain size. The highest bulk conductivity (σb) of 1.09 × 10 3 S cm 1 with an energy of activation as low as 0.28 eV was obtained at room temperature for the specimen treated at 900 °C for 6 h. The high conductivity, easy fabrication and low cost make the LATP glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li-ion rechargeable batteries.  相似文献   

11.
《Solid State Ionics》2006,177(26-32):2705-2709
Lithium ions of perovskite-type lithium ion conductor La0.55Li0.35TiO3 were replaced by divalent Mg2+, Zn2+, and Mn2+ ions in an ion-exchange reaction using molten chlorides. The polycrystalline Mg-exchanged and Zn-exchanged samples are solid electrolytes for divalent Mg2+ and Zn2+ ions, whose dc ionic conductivities (σ = 2.0 × 10 6 S cm 1 at 558 K for the Mg-exchanged sample, La0.56(2)Li0.02(1)Mg0.16(1)TiO3.01(2) and σ = 1.7 × 10 6 S cm 1 at 708 K for the Zn-exchanged samples, La0.55(1)Li0.0037(2)Zn0.15(1)TiO2.98(2)) were compared to those of the known highest Mg2+ and Zn2+ inorganic solid electrolytes. The Mn-exchanged sample, then, showed paramagnetic behavior in the temperature range of 2 to 300 K. The Mn ions in the exchanged sample are divalent and the spin configuration is in high spin state (S = 5/2).  相似文献   

12.
《Solid State Ionics》2006,177(3-4):333-341
A study of LiFePO4-based electrodes prepared through various synthesis conditions is presented. From X-Ray diffraction, high resolution transmission electron microscopy, electrochemical Li+ extraction/insertion and electrical conductivity data we conclude that the use of starting precursors such as Li2CO3, FeC2O4·2H2O and/or Nb(OC6H5)5 produces LiFePO4-based composites containing significant amounts of carbon. We never succeeded in doping LiFePO4 with Nb to yield Li1−xNbxFePO4 but produced, instead, crystalline β-NbOPO4 and/or an amorphous (Nb, Fe, C, O, P) “cobweb” around LiFePO4 particles which is responsible for superior electrochemical activity. AC-conductivity measurements conclude to a total electrical conductivity of ∼10 9 S cm 1 at 25 °C with an activation energy of ca. 0.65 eV for pure LiFePO4 and LiFePO4/β-NbOPO4 composites. C-containing LiFePO4 samples, including those that were tentatively but unsuccessfully doped with Nb, are much more conductive (up to 1.6 · 10 1 S cm 1) with an activation energy ΔE∼0.08 eV.  相似文献   

13.
Na self-diffusion, Li self-diffusion, Na+–Li+ ion exchange, electrical conductivity, and mechanical relaxation have been studied below Tg on glasses of the system ZrF4–BaF2–LaF3–AF (A=Na, Li), with A=10, 20, 30 mol%. Compared to the transport mechanism in alkali-containing silicate glasses, the mechanisms in these non-oxide glasses are anomalous. Thus the self-diffusion coefficient of Na decreases with increasing NaF content, whereas that of Li increases with increasing LiF content. Both the electrical conductivity and the Na+–Li+ ion exchange reach a minimum at ≈ 20 mol% LiF, and the mechanical relaxation shows one peak for the 20 and 30 mol% LiF-glasses and two peaks for the glass with 10 mol% LiF, evidencing both a contribution of F and Li+ ions to the transport. Moreover, the presence of the three partially interacting mobile species F, Na+, Li+ obviously leads to an anionic–cationic mixed ion effect. Applying the Nernst–Einstein equation to the Li+ transport in LiF-containing glasses shows that its mechanism is dissimilar to that in oxide glasses. Calculated short jump distances possibly can be interpreted as an Li+ movement via energetically suitable sites near F ions. Likewise the Nernst–Planck model, successfully applied to the ionic transport in mixed alkali silicate glasses, obviously does also not hold for the present heavy metal fluoride glasses.  相似文献   

14.
Adsorption of two anions (F and Cl) and two cations (Li+ and Na+) on the surface of aluminum nitride nanotubes (AlNNTs) is investigated by density functional theory. The reactions are site-selective, so that the cations and anions prefer to be adsorbed atop the N and Al atoms of the tube surface, respectively. The adsorption energies of anions (−4.46 eV for F and −1.12 eV for Cl) are much higher than those of cations (about −0.17 eV for Li+ and −0.12 eV for Na+) which can be explained using frontier molecular orbital theory. It was found that the adsorption of anions may facilitate the electron emission from the AlNNT surface by reducing the work function due to the charge transfer occurs from the anions to the tube. It has been predicted that in contrast to the cations the adsorption of anions also obviously increases the electrical conductivity of AlNNT.  相似文献   

15.
UV excited photo luminescence from Li2B4O7:Cu and Li2B4O7:Cu, Ag single crystals has been investigated in the temperature range from 77 K to 300 K. An excitation band having a doublet structure at 240 nm and 262 nm was observed for the emission at 370 nm that corresponds to 1A1g1Eg and 1A1g1T2g crystal field components of the 3d10→3d94s1 transition of Cu+. The relative intensity of these components and their temperature dependence provide a measure of the off-center displacement of the Cu+ ground state in the crystal lattice site. The co-doped Ag plays a role of a sensitizer when doped with Cu and increases the overall emission as the emission between Ag states lies in the excitation region of Cu states. The 370 nm emission in both the crystals slightly decreases with temperature; however a sudden increase in the intensity around 264 K was observed.  相似文献   

16.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

17.
《Solid State Ionics》2006,177(1-2):145-147
In Li0.6TiO2 the longitudinal muon spin relaxation function has been measured for temperatures between 10 and 600 K. The μSR spectra were analyzed with a Markov process for multiple collisions. The time scale found for the Li+ diffusion is of the order of the microsecond or shorter. Above T = 100 K the magnetic field distribution at the muon is decreasing with increasing temperature.  相似文献   

18.
《Solid State Ionics》2006,177(9-10):885-892
Tri block-copolymer poly(iminoethylene)-b-poly(oxyethylene)-b-poly(iminoethylene) with a poly(oxyethylene) central block (PEI-b-PEO-b-PEI) were used as a “dual” matrix for polymer electrolytes having selectivity for hard cations (Li+/PEO) in one phase and for soft cations (Cu2+/PEI) in the other. Conductivity measurements were recorded for 20:1, 12:1 and 8:1 coordinating atom (O or/and N) to cation (Li+, Cu2+) ratios, for each of the three complexes studied: PEI-b-PEO-LiTFSI-b-PEI, PEI-Cu(TFSI)2-b-PEO-b-PEI-Cu(TFSI)2 and PEI-Cu(TFSI)2-b-PEO-LiTFSI-b-PEI-Cu(TFSI)2. For either low (20 °C) or high temperature (80 °C) the highest conductivity was given by the polymer electrolyte based on Cu(TFSI)2 with N/Cu2+ = 20:1 (10 6, respectively 2 × 10 4 S cm 1). In the present paper, the conductivity evolution is discussed in relation with the polymer structure, the type and the concentration of the salt and the thermal behavior of our systems.  相似文献   

19.
《Solid State Ionics》2006,177(37-38):3223-3231
Proton dynamics in (NH4)3H(SO4)2 has been studied by means of 1H solid-state NMR. The 1H magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) and at Larmor frequency of 400.13 MHz. 1H static NMR spectra were measured at 200.13 MHz in the range of 135–490 K. 1H spin-lattice relaxation times, T1, were measured at 200.13 and 19.65 MHz in the ranges of 135–490 and 153–456 K, respectively. The 1H chemical shift for the acidic proton (14.7 ppm) indicates strong hydrogen bonds. In phase III, NH4+ reorientation takes place; one type of NH4+ ions reorients with an activation energy (Ea) of 14 kJ mol 1 and the inverse of a frequency factor (τ0) of 0.85 × 10 14 s. In phase II, a very fast local and anisotropic motion of the acidic protons takes place. NH4+ ions start to diffuse translationally, and no proton exchange is observed between NH4+ ions and the acidic protons. In phase I, both NH4+ ions and the acidic protons diffuse translationally. The acidic protons diffuse with parameters of Ea = 27 kJ mol 1 and τ0 = 4.2 × 10 13 s. The translational diffusion of the acidic protons is responsible for the macroscopic proton conductivity, as the NH4+ translational diffusion is slow and proton exchange between NH4+ ions and the acidic protons is negligible.  相似文献   

20.
W.G. Wang  X.P. Wang  Y.X. Gao  Q.F. Fang 《Solid State Ionics》2009,180(23-25):1252-1256
The electrical properties and the mechanism of lithium ionic diffusion in the Li7La3Ta2O13 compounds were investigated. The bulk and total conductivity at 300 K of the Li7La3Ta2O13 compound are about 3.3 × 10? 6 S/cm and 2.6 × 10? 6 S/cm, respectively. The activation energy of bulk and total conductivity is in the range of 0.38–0.4 eV. A prominent internal friction peak in Li7La3Ta2O13 compounds was observed around 280 K at 0.5 Hz, which is actually composed of two subpeaks (P1 peak at lower temperature and P2 peak at higher temperature). From the shift of peak position with frequency, the activation energy of 1.0 eV and the pre-exponential factor of relaxation time in the order of 10? 18–10? 21 s were obtained if one assumes Debye relaxation processes. These values of relaxation parameters strongly suggest the existence of interaction between the relaxation species (here lithium ions or vacancies). Based on the coupling model, the relaxation activation energies are deduced as 0.45 eV and the pre-exponential factor of relaxation time as 10? 15 s. Judging from these relaxation parameters and the similarity of structure between Li7La3Ta2O13 and Li5La3Ta2O12 compounds, the P1 and P2 peaks are suggested to be related with the lithium ionic diffusion between 48g?48g and 24d?48g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号