首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Solid State Ionics》2006,177(26-32):2463-2466
New composite materials were prepared using cesium hydrogen sulfate (CsHSO4) or cesium dihydrogen phosphate (CsH2PO4) and phosphosilicate gel (P2O5–SiO2 gel). In X-ray diffraction patterns of these composites, diffraction peaks due to Cs2H5(SO4)2(PO4) and CsH5(PO4)2 were observed for CsHSO4–(P2O5–SiO2 gel) composites and CsH2PO4–(P2O5–SiO2 gel) composites, respectively. These composites showed high conductivities in the order of 10 3 S cm 1 at 150 °C due to melting of Cs2H5(SO4)2(PO4) or CsH5(PO4)2 in the composites. In the cooling process, the CsHSO4–(P2O5–SiO2 gel) composites kept relatively high conductivity to 110 °C where solidification of Cs2H5(SO4)2(PO4) occurs, whereas CsH2PO4–(P2O5–SiO2 gel) composites showed relatively high conductivity continuously to ambient temperature.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2611-2615
Mechanical milling (MM) has been used to prepare the nanosized Li1.4Al0.4Ti1.6(PO4)3 (denoted LATP) glassy powders, which was converted into glass-ceramics through thermal treating at 700–1000 °C. The XRD, TEM, FESEM and ac impedance techniques were used to characterize the products. The results showed that completely amorphous products were prepared by MM for 40 h, and single-phase LiTi2(PO4)3-type structured glass-ceramics were obtained by further heat treatment. The lithium ion conductivity of the glass-ceramics increased with the growth of the crystalline phase and decrease of the grain size. The highest bulk conductivity (σb) of 1.09 × 10 3 S cm 1 with an energy of activation as low as 0.28 eV was obtained at room temperature for the specimen treated at 900 °C for 6 h. The high conductivity, easy fabrication and low cost make the LATP glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li-ion rechargeable batteries.  相似文献   

3.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

4.
《Solid State Ionics》2006,177(3-4):237-244
Ongoing studies of the KHSeO4–KH2PO4 system aiming at developing novel proton conducting solids resulted in the new compound K2(HSeO4)1.5(H2PO4)0.5 (dipotassium hydrogenselenate dihydrogenphosphate). The crystals were prepared by a slow evaporation of an aqueous solution at room temperature. The structural properties of the crystals were characterized by single-crystal X-ray analysis: K2(HSeO4)1.5(H2PO4)0.5 (denoted KHSeP) crystallizes in the space group P 1¯ with the lattice parameters: a = 7.417(3) Å, b = 7.668(2) Å, c = 7.744(5) Å, α = 71.59(3)°, β = 87.71(4)° and γ = 86.04(6)°. This structure is characterized by HSeO4 and disordered (HxSe/P)O4 tetrahedra connected to dimers via hydrogen bridges. These dimers are linked and stabilized by additional hydrogen bonds (O–H–O) and hydrogen bridges (O–H…O) to build chains of dimers which are parallel to the [0, 1, 0] direction at the position x = 0.5.The differential scanning calorimetry diagram showed two anomalies at 493 and 563 K. These transitions were also characterized by optical birefringence, impedance and modulus spectroscopy techniques. The conductivity relaxation parameters of the proton conductors in this compound were determined in a wide temperature range. The transport properties in this material are assumed to be due to H+ protons hopping mechanism.  相似文献   

5.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

6.
《Solid State Ionics》2006,177(26-32):2421-2424
Mixtures of CsHSO4 and CsH2PO4 were mechanochemically treated using a planetary type of ball mill. The changes in structure and proton conductivity of the solid acid compounds with the treatment have been investigated. Cs3(HSO4)2(H2PO4) and Cs5(HSO4)3(H2PO4)2 were formed during milling. The mechanochemically treated composite consisting of Cs3(HSO4)2(H2PO4) and Cs5(HSO4)3(H2PO4)2 showed higher conductivity than the untreated mixture. In addition, a high temperature phase of Cs2(HSO4)(H2PO4) was generated from the composite at around 100 °C on heating. Conductivity of the mechanochemically treated composite significantly increased at temperatures around 90 °C on heating. The value becomes 2 × 10 3 S cm 1 at around 180 °C. On the other hand, no steep decrease is observed on cooling. The activation energies of the mechanically milled sample with high conductivities were estimated to be about 0.3 eV for both heating and cooling processes. The relatively high proton conductivity and a low activation energy for the proton conduction should be ascribed to the presence of the high temperature phase of Cs2(HSO4)(H2PO4).  相似文献   

7.
《Solid State Ionics》2006,177(26-32):2457-2462
Fully immobilized phosphonic acid based proton conductors, where phosphonic acid groups are tethered to cyclic siloxanes via flexible alkane spacers, are synthesized. Unlike conventional hydrated ionomers containing sulfonic acid groups, which are commonly used as separator material in PEM fuel cells, the proton conductivity of these materials occurs within a dynamical hydrogen bond network formed by the protogenic groups (phosphonic acid), which are present at very high concentrations. Conductivities of up to 2 · 10 3 S cm 1 are obtained at T  130 °C and RH  37%. This is only slightly higher than the conductivity of similar imidazole based systems although neat phosphonic acid has a much higher proton conductivity compared to neat imidazole. The proton conductivity of phosphonic acid is more sensitive towards immobilization at cyclic siloxanes and the corresponding restrictions for hydrogen bond formation (aggregation).  相似文献   

8.
The equilibrated grain boundary groove shapes for solid carbon tetrabromide (CTB) in equilibrium with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, Gibbs–Thomson coefficient (Γ) and solid–liquid interfacial energy (σSL) and grain boundary energy (σgb) of CTB have been determined to be (7.88 ± 0.8) × 10−8 K m, (6.91 ± 1.04) × 10−3 J m−2 and (13.43 ± 2.28) × 10−3 J m−2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for CTB has also been measured to be 0.90 at its melting temperature. The value of σSL for CTB obtained in present work was compared with the values of σSL determined in the previous works for same material and it was seen that the present result is in good agreement with previous works.  相似文献   

9.
《Solid State Ionics》2006,177(19-25):1849-1853
Single phase materials of the La(2−x)SrxMnOδ (0.6  x  2.0) solid solution series were prepared via solid state reaction. The structure of each material was examined at room temperature and determined to be tetragonal for all phases examined. An expansion in lattice volume was observed on increasing lanthanum content. The stability and thermal expansion of each member of the solid solution series was determined via the use of in situ high temperature X-ray diffraction. It was found that all materials remained stable up to a temperature of 800 °C. Thermal expansion coefficients were found to be in the region of 15 × 10 6 K 1 for La(2−x)SrxMnOδ compounds where x > 1.4. The electrical conductivity of each phase was also determined over a similar temperature range with a maximum value of ∼6 Scm 1 at 900 °C for the x = 1.8 phase.  相似文献   

10.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

11.
《Solid State Ionics》2006,177(26-32):2417-2419
NH4PO3/SiO2 composite based electrolyte with SiO2 as supporting matrix was prepared. A thermogravimetric analysis was performed. Its electrochemical properties were investigated by an impedance spectroscopy within the temperature range of 100–300 °C under dry and humid atmospheres. The maximum conductivity is 6 mS cm 1 at 300 °C under dry N2 and 0.1 S cm 1 at 200 °C under humid N2.  相似文献   

12.
《Solid State Ionics》2006,177(3-4):269-274
Alkaline earth substituted UO2 (U1  xMxO2 ± δ; M = Mg, Ca, Sr; 0.1  x  0.525) with fluorite structure was synthesized in reducing atmosphere. Structure and conductivity properties of U1  xMxO2 ± δ fluorites were investigated for possible application in solid oxide fuel cells (SOFC). At room temperature and ambient atmosphere the materials are stable; however they decompose at an oxygen partial pressure pO2 > 10 4 atm and temperatures higher than 600 °C. The total conductivity measured for the best conducting U1  xMxO2 ± δ material with M = Ca and x = 0.177 is as high as 3 S/cm at pO2 < 10 4 atm at 600 °C. The relatively low ionic transference number (ti∼0.02) is disadvantageous for potential use as electrolyte material for SOFC applications. The high conductivity and possible depolarization effects suggest potential use as anode materials in SOFC.  相似文献   

13.
Composites of Al(H2PO4)3 and H3PO4 were synthesised by soft chemical methods with different Al/P ratios. The Al(H2PO4)3 obtained was found to have a hexagonal symmetry with parameter a = 13.687(3)Å, c = 9.1328(1)Å. The conductivity of this material was measured by a.c. impedance spectroscopy between 100 °C and 200 °C in different atmospheres. The conductivity of pure Al(H2PO4)3 in air is in the order of 10? 6–10? 7 S/cm between 100 and 200 °C. For samples containing small excess of H3PO4, much higher conductivity was observed. The impedance responses of the composites were found to be similar with AlH2P3O10·nH2O under different relative humidity. The conductivity of Al(H2PO4)3–H3PO4 composite with Al/P = 1/3.5 reached 6.6 mS/cm at 200 °C in wet 5% H2. The extra acid is found to play a key role in enhancing the conductivity of Al(H2PO4)3–H3PO4 composite at the surface region of the Al(H2PO4)3 in a core shell type behaviour. 0.7% excess of H3PO4 can increase the conductivity by three orders of magnitude. These composites might be alternative electrolytes for intermediate temperature fuel cells and other electrochemical devices. Conductivity (9.5 mS/cm) changed little, when the sample was held at 175 °C for over 100 h as the conductivity stabilised.  相似文献   

14.
《Solid State Ionics》2009,180(40):1683-1689
The complex perovskite (Pr0.75Sr0.25)1  xCr0.5Mn0.5O3  δ (PSCM) has been prepared and studied as possible anode material for high-temperature solid oxide fuel cells (SOFCs). PSCM exhibits GdFeO3-type structure and is both physically and chemically compatible with the conventional YSZ electrolyte. The reduction of PSCM resulted in structural change from orthorhombic Pbnm to cubic Pm-3m. Selected area electron diffraction (SAED) analysis on the reduced phases indicated the presence of a √2 × √2 × 2 superlattice. The total conductivity values of ∼ 75% dense Pr0.75Sr0.25Cr0.5Mn0.5O3  δ at 900 °C in air and 5% H2/Ar are 9.6 and 0.14 S cm 1 respectively. The conductivity of PSCM drops with decreasing Po2 and is a p-type conductor at all studied Po2. The average TEC of Pr0.75Sr0.25Cr0.5Mn0.5O3  δ is 9.3 × 10 6 K 1, in the temperature range of 100–900 °C and is close to that of YSZ electrolyte. The anode polarization resistance of PSCM in wet 5%H2 is 1.31 Ω cm2 at 910 °C and in wet CH4 at 930 °C; the polarization resistance is 1.29 Ω cm2. PSCM was unstable at 900 °C in unhumidified hydrogen. Cell performance measurements carried out using graded PSCM and La0.8Sr0.2MnO3 as anode and cathode respectively yielded a maximum power density of 0.18 W cm 2 in wet 5%H2/Ar at 910 °C and the corresponding current density was 0.44 A cm 2 at 0.4 V. The activation energy for the electrochemical cell operating in wet (3% H2O) 5%H2/Ar fuel is 85 kJ mol 1.  相似文献   

15.
《Solid State Ionics》2006,177(26-32):2313-2316
The operation of langasite (La3Ga5SiO14) resonators as sensors at elevated temperature and controlled atmospheres is examined. This paper focuses on mapping the regimes of gas-insensitive operation of uncoated langasite resonators and the correlation to langasite's defect chemistry for temperatures up to 1000 °C. As a measure of sensitivity, the fundamental resonant mode at 5 MHz is estimated to be determined to within ± 4 Hz by network analysis for resonators operated in air at temperatures below 1000 °C. The calculated frequency shift induced by redox-related reactions in langasite only exceeds the limit of ± 4 Hz below pO2  10 17 bar at 1000 °C, below 10 24 bar at 800 °C and below 10 36 bar at 600 °C. Water vapor is found to shift the resonance frequency at higher oxygen partial pressures. In the hydrogen-containing atmospheres applied here, langasite can be regarded as a stable resonator material above oxygen partial pressures of about 10 13 and 10 20 bar at 800 and 600 °C, respectively.  相似文献   

16.
《Solid State Ionics》2006,177(19-25):1757-1760
The oxygen ion and electron transport in SrFe1−xScxO3−δ  (x = 0.1–0.3) system at 700–950 °C were studied analyzing the total conductivity dependencies on the oxygen partial pressure, pO2. The conductivity measurements were performed both under reducing conditions (10 19  pO2  10 8 atm) comprising the electron-hole equilibrium point, and in oxidizing atmospheres (10 5  pO2  0.5 atm) which are characterized by extensive variations of the oxygen content studied by coulometric titration technique. The incorporation of 10% Sc3+ cations into the iron sublattice suppresses transition of the cubic perovskite phase into vacancy-ordered brownmillerite, thus improving ion conduction at temperatures below 850 °C. When scandium content increases, the ion conductivity becomes considerably lower. The hole mobility is thermally-activated and varies in the range of 0.001 to 0.05 cm2 V 1 s 1, increasing with oxygen concentration and decreasing on Sc doping.  相似文献   

17.
《Solid State Ionics》2006,177(3-4):333-341
A study of LiFePO4-based electrodes prepared through various synthesis conditions is presented. From X-Ray diffraction, high resolution transmission electron microscopy, electrochemical Li+ extraction/insertion and electrical conductivity data we conclude that the use of starting precursors such as Li2CO3, FeC2O4·2H2O and/or Nb(OC6H5)5 produces LiFePO4-based composites containing significant amounts of carbon. We never succeeded in doping LiFePO4 with Nb to yield Li1−xNbxFePO4 but produced, instead, crystalline β-NbOPO4 and/or an amorphous (Nb, Fe, C, O, P) “cobweb” around LiFePO4 particles which is responsible for superior electrochemical activity. AC-conductivity measurements conclude to a total electrical conductivity of ∼10 9 S cm 1 at 25 °C with an activation energy of ca. 0.65 eV for pure LiFePO4 and LiFePO4/β-NbOPO4 composites. C-containing LiFePO4 samples, including those that were tentatively but unsuccessfully doped with Nb, are much more conductive (up to 1.6 · 10 1 S cm 1) with an activation energy ΔE∼0.08 eV.  相似文献   

18.
《Solid State Ionics》2009,180(40):1702-1709
Nanopowders of Ca1  xEuxMnO3 (0.1  x  0.4) manganites were synthesized as a single phase using the auto gel-combustion method. The citrate method shows to be simple and appropriate to obtain single phases avoiding segregation or contamination. The Ca1  xEuxMnO3 system has been synthesized at 800 °C during 18 h, against the conventional method of mixing oxides used to obtain these materials at higher temperatures of synthesis. The formation reaction was monitored by X-ray diffraction (XRD) analysis and an infrared absorption technique (FTIR). The polycrystalline powders are characterised by nanometric particle size, ∼ 48 nm as determined from X-ray line broadening analysis using the Scherrer equation. Morphological analysis of the powders, using the scanning electron microscope (SEM), revealed that all phases are homogeneous and the europium-substituted samples exhibit a significant decrease in the grain size when compared with the undoped samples. The structure refinement by using the Rietveld method indicates that the partial calcium substitution by europium (for x  0.3) modifies the orthorhombic structure of the CaMnO3 perovskite towards a monoclinic phase. All manganites show two active IR vibrational modes around 400 and 600 cm 1. The high temperature dependence of electrical resistivity (between 25 and 600 °C) allows us to conclude that all the samples exhibit a semiconductor behaviour and the europium causes a decrease in the electrical resistivity by more than one order of magnitude. The results can be well attributed to the Mn4+/Mn3+ ratio.  相似文献   

19.
《Solid State Ionics》2006,177(7-8):703-707
A polyphosphazene [NP(NHR)2]n with oligo[propylene oxide] side chains − R = –[CH(CH3)–CH2O]m–CH3 (m = 6  10) was synthesized by living cationic polymerisation and polymer-analogue substitution of chlorine from the intermediate precursor [NPCl2]n using the corresponding primary amine RNH2. The polymer had an average molecular weight of 3.3 × 105 D. Polymer electrolytes with different concentrations of dissolved lithium triflate (LiCF3SO3) were prepared. Mechanically stable polymer electrolyte membranes were formed using UV radiation induced crosslinking of the polymer salt mixture in the presence of benzophenone as photoinitiator. The glass transition temperature of the parent polymer was found to be − 75 °C before cross linking. It increases after crosslinking and with increasing amounts of salt to a maximum of − 55 °C for 20 wt.% LiCF3SO3. The ionic conductivity was determined by impedance spectroscopy in the temperature range 0–80 °C. The highest conductivity was found for a salt concentration of 20 wt.% LiCF3SO3: 6.5 × 10 6 S·cm 1 at 20 °C and 2.8 × 10 4 S cm 1 at 80 °C. The temperature dependence of the conductivities was well described by the MIGRATION concept.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2705-2709
Lithium ions of perovskite-type lithium ion conductor La0.55Li0.35TiO3 were replaced by divalent Mg2+, Zn2+, and Mn2+ ions in an ion-exchange reaction using molten chlorides. The polycrystalline Mg-exchanged and Zn-exchanged samples are solid electrolytes for divalent Mg2+ and Zn2+ ions, whose dc ionic conductivities (σ = 2.0 × 10 6 S cm 1 at 558 K for the Mg-exchanged sample, La0.56(2)Li0.02(1)Mg0.16(1)TiO3.01(2) and σ = 1.7 × 10 6 S cm 1 at 708 K for the Zn-exchanged samples, La0.55(1)Li0.0037(2)Zn0.15(1)TiO2.98(2)) were compared to those of the known highest Mg2+ and Zn2+ inorganic solid electrolytes. The Mn-exchanged sample, then, showed paramagnetic behavior in the temperature range of 2 to 300 K. The Mn ions in the exchanged sample are divalent and the spin configuration is in high spin state (S = 5/2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号