首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Baoan Fan  Xiangli Liu 《Solid State Ionics》2009,180(14-16):973-977
A-deficit La0.54Sr0.44Co0.2Fe0.8O3 ? δ cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) was synthesized by a citrate complexation (Pechini) route. Using La0.54Sr0.44Co0.2Fe0.8O3 ? δ as cathode material, a superior cell performance with the maximum power density of 309, 470 and 855 mW cm? 2 at 600, 650 and 700 °C was achieved, in contrast with the maximum power density of 266, 354 and 589 mW cm? 2 using conventional La0.6Sr0.4Co0.2Fe0.8O3 ? δ as cathode material at the same temperatures. The reason of this improvement was analyzed on the basis of defect chemistry. Thermal shrinkage experiment testified that the oxygen vacancies in La0.54Sr0.44Co0.2Fe0.8O3 ? δ are more mobile than in La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Furthermore, theoretical calculation in terms of their composition and the shift of peak position in XRD pattern showed that the concentration of oxygen vacancies of La0.54Sr0.44Co0.2Fe0.8O3 ? δ is higher than that of La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Therefore, the oxygen ion conductivity via vacancies transfer mechanism is enhanced, which induces the polarization resistance of La0.54Sr0.44Co0.2Fe0.8O3 ? δ being decreased with a result of cell performance improved.  相似文献   

2.
《Solid State Ionics》2006,177(15-16):1331-1334
Hard carbon/Li2.6Co0.4N composite anode electrode is prepared to reduce the initial high irreversible capacity of hard carbon, which hinders potential application of hard carbon in lithium ion batteries, by introducing Li2.6Co0.4N into hard carbon. Lithiated Li2.6Co0.4N provides the compensation of lithium in the first cycle, leading to a high initial coulombic efficiency of ca. 100% versus lithium. As-prepared hard carbon/Li2.6Co0.4N composite electrode presents initial capacity of 438 mA h g 1. A full cell using LiCoO2 cathode and the composite anode shows much higher initial coulombic efficiency and capacity than those of a cell using LiCoO2 and hard carbon anode. This paves the way to reduce the large initial irreversible capacity of hard carbon.  相似文献   

3.
This study examined the electrochemical and structural stability of ∼1.5 wt.% AlPO4-coated LiNi0.9Co0.1O2. The AlPO4-coated LiNi0.9Co0.1O2 retained ∼60% of the original capacity after 50 cycles, compared with the ∼30% capacity retention of the bare LiNi0.9Co0.1O2. The discharge profiles and cyclic voltammograms from 4.5 V at 90 °C for 4 h showed enhanced structural stability. Scanning electron microscopy and X-ray diffraction revealed that the AlPO4-coated LiNi0.9Co0.1O2 had less degradation than the bare LiNi0.9Co0.1O2.  相似文献   

4.
《Solid State Ionics》2006,177(37-38):3303-3307
Using Na2CO3 and Me(NO3)2 (Me = Ni, Co and Mn) as starting materials, the precursor of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium rechargeable batteries has been synthesized by carbonate co-precipitation. The precursor was mixed with Li2CO3 and heated in air. Thermogravimetric analysis (TG–DTA), laser particle size analysis, X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. The D50 of precursor was 2.509 μm and the distribution was relatively narrow. The optimum calcination temperature was 850–900 °C. Galvanostatic cell cycling and cyclic voltammetry were also used to evaluate the electrochemical properties. The initial discharge capacity for the powders calcined at 900 °C was about 180 mA h/g at room temperature when cycled between 2.8 and 4.3 V at 0.2 C rate.  相似文献   

5.
LiNi0.5Mn1.5O4 was synthesized as a cathode material for Li-ion batteries by a sonochemical reaction followed by annealing, and was characterized by XRD, SEM, HRTEM and Raman spectroscopy in conjunction with electrochemical measurements. Two samples were prepared by a sonochemical process, one without using glucose (sample-S1) and another with glucose (sample-S2). An initial discharge specific capacity of 130 mA h g−1 is obtained for LiNi0.5Mn1.5O4 at a relatively slow rate of C/10 in galvanostatic charge–discharge cycling. The capacity retention upon 50 cycles at this rate was around 95.4% and 98.9% for sample-S1 and sample-S2, respectively, at 30 °C.  相似文献   

6.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

7.
《Solid State Ionics》2006,177(9-10):847-850
LiCr0.15Mn1.85O4 spinel has been successfully synthesized by glycine–nitrate method (GNM). The presence of pure spinel phase was confirmed by long term XRPD measurements and the Rietveld structural refinement. Lattice parameter was estimated to be 8.2338 Å. Average particle size of prepared powder material is below 500 nm. The BET surface area is 9.6 m2 g 1. As a cathode material for lithium batteries LiCr0.15Mn1.85O4 shows initial discharge capacity of 110 mA h g 1 and capacity retention of 83% after 50 cycles.  相似文献   

8.
《Solid State Ionics》2006,177(19-25):1803-1806
Defect chemistry for a mixed conductor, La0.6Sr0.4Co0.2Fe0.8O3−δ was studied. Samples were treated under controlled oxygen partial pressure, P(O2), conditions at 1273 K [10 11.1  P(O2)/atm  1], and cooled to room temperature. Oxygen nonstoichiometry and valences of transition metal ions for the treated samples were evaluated by iodometry and X-ray absorption spectroscopy, respectively. With decreasing P(O2), preferential reduction of Co3+ to Co2+ was observed, while iron preserved its higher valence above 3 under conditions studied. A dependency of its electrical conductivity on P(O2) was discussed along with a change in concentration of oxygen vacancies and mixed valences.  相似文献   

9.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

10.
《Solid State Ionics》2006,177(9-10):833-842
The phase stability, oxygen stoichiometry and expansion properties of SrCo0.8Fe0.2O3−δ (SCF) were determined by in situ neutron diffraction between 873 and 1173 K and oxygen partial pressures of 5 × 10 4 to 1 atm. At a pO2 of 1 atm, SCF adopts a cubic perovskite structure, space group Pmm, across the whole temperature range investigated. At a pO2 of 10 1 atm, a two-phase region exists below 922 K, where the cubic perovskite phase coexists with a vacancy ordered brownmillerite phase, Sr2Co1.6Fe0.4O5, space group Icmm. A pure brownmillerite phase is present at pO2 of 10 2 and 5 × 10 4 atm below 1020 K. Above 1020 K, the brownmillerite phase transforms to cubic perovskite through a two-phase region with no brownmillerite structure observed above 1064 K. Large distortion of the BO6 (B = Co, Fe) octahedra is present in the brownmillerite structure with apical bond lengths of 2.2974(4) Å and equatorial bond lengths of 1.9737(3) Å at 1021 K and a pO2 of 10 2 atm. SCF is highly oxygen deficient with a maximum oxygen stoichiometry, 3  δ, measured in this study of 2.58(2) at 873 K and a pO2 of 1 atm and a minimum of 2.33(2) at 1173 K and a pO2 of 5 × 10 4 atm. Significant differences in lattice volume and expansion behavior between the brownmillerite and cubic perovskite phases suggest potential difficulties in thermal cycling of SrCo0.8Fe0.2O3−δ membranes.  相似文献   

11.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

12.
《Solid State Ionics》2006,177(1-2):29-35
Microstructure and local structure of spinel LiNixMn2  xO4 (x = 0, 0.1 and 0.2) were studied using X-ray diffraction (XRD) and a combination of X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and Raman scattering with the aim of getting a clear picture of the local structure of the materials responsible for the structural stability of LiNixMn2  xO4. XRD study showed that Ni substitution caused the changes of the materials’ microstructure from the view of the lattice parameter, mean crystallite size, and microstrain. XPS and XANES studies showed the Ni oxidation state in LiNixMn2  xO4 was larger than + 2, and the Mn oxidation state increased with Ni substitution. The decrease of the intensity of the 1s → 4pz shakedown transition on the XANES spectra indicated that Ni substitution suppressed the tetragonal distortion of the [MnO6] octahedron. The Mn(Ni)–O bond in LiNixMn2  xO4, which is stronger than the Mn–O bond in LiMn2O4 was responsible for the blue shift of the A1g Raman mode and could enhance the structural stability of the [Mn(Ni)O6] octahedron.  相似文献   

13.
《Solid State Ionics》2006,177(26-32):2269-2273
Iron-doped Pr2Ni0.8Cu0.2O4 was studied as a new mixed electronic and oxide-ionic conductor for use as an oxygen-permeating membrane. An X-ray diffraction analysis suggested that a single phase K2NiF4-type structure was obtained in the composition range from x = 0 to 0.05 in Pr2Ni0.8  xCu0.2FexO4. It is considered that the doped Fe is partially substituted at the Ni position in Pr2NiO4. The prepared Pr2NiO4-based oxide exhibited a dominant hole conduction in the PO2 range from 1 to 10 21 atm. The electrical conductivity of Pr2Ni0.8−xCu0.2FexO4 is as high as 102 S cm 1 in the temperature range of 873–1223 K and it gradually decreased with the increasing amount of Fe substituted for Ni. The oxygen permeation rate was significantly enhanced by the Fe doping and it was found that the highest oxygen permeation rate (60 μmol min 1 cm 2) from air to He was achieved for x = 0.05 in Pr2Ni0.8  xCu0.2FexO4. Since the chemical stability of the Pr2NiO4-based oxide is high, Pr2Ni0.75Cu0.2Fe0.05O4 can be used as the oxygen-separating membrane for the partial oxidation of CH4. It was observed that the oxygen permeation rate was significantly improved by changing from He to CH4 and the observed permeation rate reached a value of 225 μmol min 1 cm 2 at 1273 K for the CH4 partial oxidation.  相似文献   

14.
Single-phase undoped LiNi0.8Co0.2O2 and Sr2+-doped LiNi0.8Co0.2O2 were synthesized by a low temperature tartaric acid assisted sol-gel method. Small quantities of Sr2+ were used as dopants in order to improve the electrochemical characteristics, especially the capacity and cycling performance of LiNi0.8Co0.2O2. The electrochemical performance of the undoped material was promising with a first discharge capacity of 174 mAh/g and 165 mAh/g after 10 cycles with a 100% cycling efficiency in the tenth cycle. Addition of Sr2+ for Li in minimum quantities with the Sr2+/Li+ dopant mole ratio ranging from 10−4 to 10−8 resulted in improved electrochemical properties for dopant mole ratio of 10−6. The first discharge capacity was 182 mAh/g and the tenth was 174 mAh/g at the 10th discharge. The synthesis of Sr2+-doped LiNi0.8Co0.2O2 and its improved electrochemical properties have been discussed for the first time. The improved electrochemical properties of Sr2+-doped LiNi0.8Co0.2O2 system are explained based on defect models.  相似文献   

15.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

16.
《Solid State Ionics》2006,177(1-2):73-76
Ionic conduction in fluorite-type structure oxide ceramics Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) at temperature 400–800 °C was systematically studied under wet hydrogen/dry nitrogen atmosphere. On the sintered complex oxides as solid electrolyte, ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid states proton conducting cell reactor by electrochemical methods, which directly evidenced the protonic conduction in those oxides at intermediate temperature. The rate of evolution of ammonia in Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) is up to 7.2 × 10 9, 7.5 × 10 9, 7.7 × 10 9, 8.2 × 10 9 mol s 1 cm 2, respectively.  相似文献   

17.
We report the significant enhancement of the power factor of Ca3Co4O9+δ through Yb doping. The pellets were prepared by pressing under 0.5 GPa and 2 GPa. The highest power factor of 553 μW m?1 K?2 due to the significant increase of electrical conductivity was obtained for Ca2.9Yb0.1Co4O9+δ pressed at 0.5 GPa. This is 2.3 times higher than that of Ca3Co4O9+δ (246 μW m?1 K?2). Nanostructure examinations show that the pellets pressed at 0.5 and 2 GPa have different nano-lamella structures. This work suggests that Yb is an effective doping element for enhancing the electrical transport properties of Ca3Co4O9+δ, and the optimum doping level is related to the nanostructure of the bulk pellets.  相似文献   

18.
《Solid State Ionics》2006,177(1-2):121-127
Lithium cobalt vanadate LixCoVO4 (x = 0.8; 1.0; 1.2) has been prepared by a solid state reaction method. The XRD analysis confirms the formation of the sample. A new peak has been observed for Li1.0CoVO4 and for Li1.2CoVO4 indicating the formation of a new phase. The XPS analysis indicates the reduction in the oxidation of vanadium and oxygen with the addition of Li in LixCoVO4 (x = 0.8, 1.0, 1.2). The impedance analysis gives the conductivity value as 2.46 × 10 5, 6.16 × 10 5, 9 × 10 5 Ω 1 cm 1 for LixCoVO4 (x = 0.8; 1.0; 1.2), all at 623 K. The similarity in the bulk activation energy (Ea) and the activation enthalpy for migration of ions (Eω) indicate that the conduction in Li1.2CoVO4 has been due to hopping mechanism.  相似文献   

19.
A large difference in thermal expansion coefficient of electrode and electrolyte leads to imperfect electrode/electrolyte interface and hence significant polarization losses in solid oxide fuel cells. To overcome the difficulties associated with electrode and electrode/electrolyte interface, there is need to fabricate the composite cathode. Thus the present paper deals with study of La0.6Sr0.4Co0.2Fe0.8O3−δ(LSCF)–Ce0.9Gd0.1O1.95(GDC) nanocomposite with different fractions of GDC obtained by physical mixing of combustion synthesized nanopowders. No secondary phases were observed upon sintering at 1100 °C for 2 h affirming the chemical compatibility between LSCF and GDC. The composites with relatively high GDC% have higher density as a consequence of rapid grain growth and less conductivity. The nanocomposite with 50% of GDC showed electric conductivity of 30 Scm−1 at 500 °C and low area specific resistance of 106 Ω cm2 with 10 μs relaxation time at 200 °C.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1743-1746
We synthesized BaIn1−xCoxO3−δ (x = 0–0.8) with a defective perovskite structure by partly replacing In with Co in Ba2In2O5. Based on XRD measurements, the synthesized compound was found to have cubic perovskite and orthorhombic brownmillerite structures depending on the amount of Co. BaIn1−xCoxO3−δ (x = 0.2 and 0.3) showed high total electrical conductivities without undergoing the structural transformation that the original Ba2In2O5 undergoes. Some of the samples showed both electronic and oxide ionic conductivities. At the same time, the oxide ionic conductivity was comparable with that of Ba2In2O5. For example, the sample with x = 0.1 had a total electrical conductivity of 4.7 × 10 1 S cm 1 and an oxide ion transport number of 0.52 at 850 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号