首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LaGaO3-based perovskite oxide doped with Sr and Mg exhibits high ionic conduction over a wide oxygen partial pressure. In this study, the stability of the LaGaO3 based oxide was investigated. It became clear that LaGaO3 based oxide is very stable for reduction and oxidation. SOFCs utilizing LaGaO3-based perovskite type oxide for electrolyte were further studied for the decreased temperature solid oxide fuel cells. The power generation characteristics of cells were strongly affected by the electrode, both anode and cathode. It became clear that Ni and LnCoO3 (Ln: rare earth) are suitable for anode and cathode, respectively. Rare earth cations in the Ln-site of Co-based perovskite cathode also have a great effect on the power generation characteristics. In particular, high power density could be attained in the temperature range from 973 to 1273 K by using doped SmCoO3 for the cathode. The electrical conductivity of SmCoO3 increases with increasing Sr amount doped for the Sm site and attained the maximum at Sm0.5Sr0.5CoO3. The cathodic overpotential and the internal cell resistance exhibit almost opposite dependence on the amount of doped Sr. Consequently, the power density of the cell reaches a maximum when Sm0.5Sr0.5CoO3 is used for cathode. On this cell, the maximum power density is as high as 0.58 W/cm2 at 1073 K, although a 0.5 mm thick electrolyte is used. Therefore, this study reveals that the LaGaO3 based oxide for electrolyte and the SmCoO3 based oxide for cathode are promising for solid oxide fuel cells at intermediate temperature. Paper presented at the 97th Xiangshan Science Conference on New Solid State Fuel Cells, Xiangshan, Beijing, China, June, 14–17, 1998.  相似文献   

2.
Oxygen-ion conducting solid electrolyte systems have been reviewed with specific emphasis on their use in solid oxide fuel cells. The relationships between phase assemblage, electrolyte stability and ionic conductivity have been discussed. The role of parameters such as sintering temperature and atmosphere which influence the segregation of impurities, present in the starting ceramic powders, at grain boundaries and at the external surface of the electrolyte compacts has been emphasised. The stability of various electrolyte materials in contact with other fuel cell components and in fuel environments has been discussed in detail. The ageing behaviour at fuel cell operating temperatures has been described. Data on ionic conductivity, mechanical and thermal properties have been presented for a number of electrolyte materials.  相似文献   

3.
Zirconia based oxide ion conductors for solid oxide fuel cells   总被引:2,自引:0,他引:2  
The electrical conductivity in the ZrO2-Ln2O3 and ZrO2-MO2-Ln2O3(M = Hf, Ce, Ln = lanthanides) systems has been examined.The highest conductivity of 0.3 S/cm at 1000 °C was found in the ZrO2-Sc2O3 system. The addition of MO2 into the ZrO2-Ln2O3(Ln = Sc, Y, Yb) systems showed the conductivity decreasing. The conduction mechanism in the zirconia based oxide ion conductors was discussed in view of the dopant ionic radius. The aging effect of the conductivity in the ZrO2-Ln2O3 systems has been measured in a temperature rang 800–1000 °C. ZrO2 with a high content of Ln2O3 showed no significant conductivity degradation. Paper presented at the 97th Xiangshan Science Conference on New Solid State Fuel Cells, Xiangshan, Beijing, China, June 14–17, 1998.  相似文献   

4.
In this study, the quaternary solid solutions of (Bi2O3)(0.8?x)(Tb4O7)0.1(Ho2O3)0.1(Dy2O3)x (x = 0.05, 0.10, 0.15, 0.20) as an electrolyte were synthesized for solid oxide fuel cells by the technique of solid-state synthesis.

The products were characterized by X-ray powder diffraction, differential thermal analysis/thermal gravimetry and the four-point probe technique (4PPT). The total electrical conductivity is measured on the temperature and the doped concentration by 4PPT.

All samples have been obtained as the δ-phase. According to the measurements of the 4PPT, the electrical conductivities of the samples increase with the temperature but decrease with the amount of doping rate. The value of the highest conductivity (σ) is found as 1.02?×?10?1 S cm?1 for the system of (Bi2O3)0.75(Tb4O7)0.1(Ho2O3)0.1(Dy2O3)0.05 at 850 °C. The thermal gravimetry (TG) curve shows that there is no mass loss of sample during the measurement. The analyses of differential thermal reveal that there are neither endothermic peaks nor exothermic peaks during the heating and cooling cycles (ranging from 30 to 1000 °C).  相似文献   

5.
A series of nano-crystalline ceria-based solid solution electrolyte, Ce0.8La0.2?x MgxO2?δ (x?=?0.0, 0.05, 0.10, 0.15, and 0.2), were synthesized via the polyvinyl alcohol (PVA) assisted combustion method, and then characterized to the crystalline structure, powder morphology, sintering micro-structure, and electrical properties. Present study showed that Ce0.8La0.2?x Mg x O2?δ was exceedingly stable as a cubic phase in all temperature range and exhibited fine crystals ranging from 15 to 20 nm. After sintering at 1,400 °C, the as-prepared pellets exhibited a dense micro-structure with 96 % of theoretical density. The electrical conductivity was studied using AC impedance spectroscopy and it was observed that the composition Ce0.8La0.1?Mg0.1O2?δ showed higher electrical conductivity of 0.020 S?cm?1 at 700 °C. The thermal expansion was measured using dilatometer technique in the temperature range 30–1,000 °C. The average thermal expansion coefficient of Ce0.8La0.1?Mg0.1O2?δ was 12.37?×?10?6 K?1, which was higher than that of the commonly used SOFC electrolyte YSZ (~10.8?×?10?6 K?1).  相似文献   

6.
《Solid State Ionics》2006,177(19-25):1949-1953
Partial electronic and oxide ionic conduction in LaGaO3 doped with Sr and Mg, Co for Ga site was studied with the ion blocking method. It was found that doping small amount of Co into Ga site is effective for elevating the oxide ion conductivity. However, it is seen that the partial electronic conduction monotonically increases with increasing Co amount and PO2 at p–n transition was shifted to lower value. Even at X = 0.1, the oxide ion conductivity in LSGMC is still dominant. Calculation on the theoretical leakage of electrolyte of solid oxide fuel cells suggests that the highest efficiency of the electrolyte was achieved around 100 μm in thickness for La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC). Preparation of LSGMC film on Ni–Sm0.2Ce0.8O2 porous anode was studied with the colloidal spray method. In order to prevent the reaction between substrate and film, La doped CeO2 was used for the interlayer film. In accordance with the theoretical calculation, open circuit potential of the cell using LSGMC film electrolyte with 40 μm thickness becomes much smaller than the theoretical value. However, fairly large maximum power density (0.21 W/cm2) can be achieved at 873 K and even at 773 K, the maximum power density of the cell as high as 0.12 W/cm2 was exhibited on the SOFC using 40 μm thickness LSGMC electrolyte.  相似文献   

7.
In this work, the potential use of faujasite zeolites as a solid electrolyte material was evaluated with a particular focus on their endurance in acid environment, and on the influence played by the zeolites' chemical and textural properties on the degree of hydration and proton conductivity. Three faujasites with different initial Si/Al ratio were exposed to 6 mol dm−3 HCl solution and the exposure time was varied up to 7000 h for selected samples. Faujasite dealumination is a very fast process occurring mainly within 24 h of exposure. X-ray diffraction patterns show the faujasite structure was preserved, although N2 sorption measurements indicate a possible partial collapse of the pore structure for samples dealuminated for 4500 and 7000 h.The proton conductivity of the faujasites is in the order of 10−8 S cm-1 at 10% relative humidity, 10−6 S cm-1 at 90% relative humidity, and 10−4 S cm-1 for samples immersed in liquid water. The correlation between the proton conductivity and the zeolites' properties shows the predominant influence of the Al content at low relative humidity, and of the water content and micropore and mesopore volumes at high relative humidity. In particular, the expected increase of the proton conductivity with the mesopore volume at high relative humidity and for samples saturated with water was not observed.  相似文献   

8.
Solid oxide fuel cells directly convert the chemical energy of a fuel into electricity. To enhance the efficiency of the fuel cells, the thickness of the gastight solid electrolyte membranes should be as thin as possible. Y2O3-stabilised ZrO2 (YSZ) electrolyte films were prepared by reactive sputtering deposition using Zr/Y targets in Ar/O2 atmospheres. The films were 5 – 8 μm thin and were deposited onto anode substrates made of a NiO/YSZ composite. After deposition of a cathode with the composition La0.65Sr0.35MnO3 the electrochemical properties of such a fuel cell were tested under operating conditions at temperatures between 600 °C and 850 °C. Current-voltage curves were recorded and impedance measurements were performed to calculate apparent activation energies from the fitted resistance data. The conductivity of the YSZ films varied between 4.6·10−6 S/cm and 2.2·10−5 S/cm at 400 °C and the fuel cell gave a reasonable power density of 0.4 W/cm2 at 0.7 V and 790 °C using H2 with 3 % H2O as fuel gas. The gas compositions were varied to distinguish the electrochemical processes of the anode and cathode in the impedance spectra. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

9.
The use of a double-layer ceria-gadolinia (CGO) - yttria-stabilized zirconia (YSZ) electrolyte has been suggested as an alternative for efficient intermediate temperature operation of Solid Oxide Fuel Cells (SOFC). CGO offers the advantage of high ionic conductivity and good chemical compatibility with Co-containing cathode perovskite materials, while YSZ serves as an electron blocking layer. The main problem for the applicability of such a composite film still remains the formation of a poorly conductive solid solution phase at the CGO/YSZ interface. The microstructure and the elemental distribution of this solid solution phase were examined with the aid of electronic probe microanalysis. Powders with the same composition were synthesized in order to examine their crystal structure and electrical properties, with the objective to propose a suitable gradation at the interface in order to improve the feasibility of CGO/YSZ two- layer composite electrolyte films. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998  相似文献   

10.
Various types of gas cells are studied using high-temperature-type proton and oxide ion conductors as the solid electrolyte. Steam and hydrogen concentration cells could be constructed using the SrCeO3-based proton conductive solid electrolyte. Using the oxide ion conductor, YSZ, the steam concentration cell could also be constructed in hydrogen atmosphere. Some characteristics of these cells are discussed.  相似文献   

11.
A highly conductive bismuth oxide/ceria bilayer electrolyte was developed to reduce solid oxide fuel cell (SOFC) operating temperatures. Bilayer electrolytes were fabricated by depositing a layer of Er0.2Bi0.8O1.5 (ESB) of varying thickness via pulsed laser deposition and dip-coating on a Sm0.2Ce0.8O1.9 (SDC) substrate. The open-circuit potential (OCP) and ionic transference number (t i) of ESB/SDC electrolytes were tested in a fuel cell arrangement as a function of relative thickness, temperature, and with H2/H2O and CO/CO2 on the anode side and air on the cathode side. These EMF measurements showed a significant increase in OCP and t i with the bilayer structure, as compared to the cells with a single SDC electrolyte layer. Furthermore, improvement in the OCP and t i of bilayer SOFCs was observed with increasing relative thickness of the ESB layers. Hence, the bilayer structure overcomes the limited thermodynamic stability of bismuth oxides and prevents electronic conductivity of ceria-based oxides in reducing atmosphere.  相似文献   

12.
The use of conductive coating on interconnect ferritic stainless steel can reduce electrical resistivity. In this study, an AISI 430 ferritic stainless steel interconnect was coated with a manganese base pack mixture by pack cementation. The effect of oxide scale thickness on electrical conductivity was evaluated by applying isothermal oxidation at 750?°C. This effect was also investigated at different temperatures (400?C900?°C). The formation of manganese spinels during annealing improved the oxidation resistance and electrical conductivity. Results showed that the increase in isothermal oxidation time and temperature increased the oxide thickness, and this resulted in the relatively low values of electrical conductivity. Manganese spinels enhanced the electrical conductivity and oxidation resistance of coated substrates as compared to uncoated substrates.  相似文献   

13.
Experimental investigations on new materials for application as electrolyte in electrolyte supported planar Intermediate Temperature Solid Oxide Fuel Cells (ITSOFC) operating below 800 °C is in progress at our laboratory. Sr and Mg doped Lanthanum gallate (LSGM) powder was prepared by glycine — nitrate combustion method. The prepared LSGM powder is relatively finer than that prepared through other techniques such as solid-state reaction. The measurements comprising XRD, particle size, density, TGA/DTA were made. Thin sections of circular pellets were fabricated and annealed at different temperatures ranging between 1000 and 1300 °C. The sintering behaviour of LSGM was investigated to obtain information on the densification factor, relative percentage shrinkage/expansion in volume, while annealing and the resulting apparent porosity values. Bismuth oxide is found to be an effective sintering aid in general. So the effect of bismuth oxide addition on LSGM was investigated through sintering studies, XRD, TGA/DTA, SEM and conductivity measurements. The results obtained on LSGM with and without bismuth oxide addition are discussed with respect to the requirement of an electrolyte for ITSOFC applications. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

14.
Yttrium doped strontium titanate with A-site deficiency ((Y0.08Sr0.92)1 ? xTiO3 ? δ) was synthesized by conventional solid state reaction. The deficiency limit of A-site in (Y0.08Sr0.92)1 ? xTiO3 ? δ is below 6 mol% in Ar/H2 (5%) at 1500 °C. The sinterability of (Y0.08Sr0.92)1 ? xTiO3 ? δ samples decreases slightly with increasing A-site deficiency level (x). The ionic conductivity of (Y0.08Sr0.92)1 ? xTiO3 ? δ samples increases while the electronic conductivity decreases with increasing A-site deficient amount. The defect chemistry analysis indicates that the introduction of A-site deficiency results in not only the increase of oxygen vacancy concentration but also the decrease of Ti3+-ion concentration. The latter plays the main role in the electrical conduction. (Y0.08Sr0.92)1 ? xTiO3 ? δ shows good thermal-cyclic performance in electrical conductivity and has an excellent chemical compatibility with YSZ electrolyte below 1500 °C.  相似文献   

15.
Doping transition metal cation is known to enhance the electronic conduction of solid electrolytes, however, the ionic conduction can also be improved by those dopants. In this investigation, the oxide ion conductivity of LaGaO3 based oxide doped with transition metal cations such as Fe, Co, Ni, Mn, and Cu for the Ga site was studied. It was found that doping Co or Fe is effective for enhancing the oxide ion conductivity. The improved oxide ion conductivity may be induced by the improved mobility of oxide ion. Among examined transition metal cations, cobalt is the most adequate cation as a dopant for the Ga site of LSGM. Considering the conductivity and the transport number, the optimized composition is found to be La0.8Sr0.2Ga0.8Mg0.115Co0.085O3. In this work, application of Co2+ doped LSGM as the electrolyte of internally reformed fuel cells was also investigated. Improvement in oxide ion conductivity is effective for enhancing the power generation characteristics. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

16.
P. Vernoux 《Ionics》1997,3(3-4):270-276
The electrochemical behavior of pure lanthanum chromite and strontium dopedlanthanum chromite was studied by impedance spectroscopy under H2/H2O, CO/CO2 and CH4/H2O. Results show that the electrochemical oxidation of H2 is faster than that of CO or CH4. Strontium doping enhances the anodic activity of the material. The impedance diagrams are composed of two semi-circles. The high frequency one does not appear to be related to a chemical or electrochemical reaction. The low frequency one is linked to the nature and concentration of the electroactive species. Paper presented at the 4th Euroconference on Solid State Ionics in Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

17.
采用反应磁控溅射方法,在(0001)蓝宝石单晶衬底上,制备了纳米多晶Gd2O3掺杂CeO2(GDC)氧离子导体电解质薄膜,采用X射线衍射仪(XRD)、原子力显微镜(AFM)对薄膜物相、结构、粗糙度、表面形貌等生长特性进行了表征,利用交流阻抗谱仪测试了GDC薄膜不同温度下的电学性能;实验结果表明,GDC薄膜为面心立方结构,在所研究的衬底温度范围内,均呈强(111)织构生长;薄膜表面形貌随衬底温度发生阶段性变化:衬底温度由室温升高到300℃时,对应球形生长岛到棱形生长岛的转变,当完全为棱形岛生长时(300℃),生长岛尺寸显著增大;从400℃开始,则发生棱形生长岛到密集球形生长岛的转变,球形生长岛尺寸明显减小.生长形貌的转变反映着薄膜生长初期不同的成核机理,很可能与蓝宝石(13001)面的表面结构随温度变化有关;GDC多晶电解质薄膜的复平面交流阻抗谱主要源于晶界的贡献,根据Arrhenius图求得电导活化能Ea在1.2-1.5 ev范围内,接近于晶界电导的活化能值,并且随衬底温度升高Ea减小(Ea300 > Ea400> Ea600 );电导活化能以及晶粒尺寸不同,导致GDC薄膜电导率随测试温度的变化规律不同.  相似文献   

18.
Chronopotentiometric curves, generated by galvanostatic single steps, applied to solid oxide electrolyte cells, have been analysed on the basis of a dimensionless equation derived on the assumption that a scale of oxide grows at one of the electrode-electrolyte interfaces. This process is rate limiting for developing the charge transfer-diffusion overvoltage, and Wagner's theory on tarnishing under retarding electric field conditions, has been assumed for treating the kinetics of the growing scale. At constant temperature, the oxidation rate and oxidation rate constant have been measured as a function of the oxygen partial pressure in the range of pressures near the equilibrium pressure of the metal-oxide system.  相似文献   

19.
Thermal e.m.f. method was used to estimate minimum working temperature of Pt, Pd, Ni, Ag, and Au electrodes for solid electrolyte ZrO2 + Y2O3 cells in gaseous mixtures He + O2, Co + Co2, H2 + H2O over a temperature range of 1070-400 K.  相似文献   

20.
In order to improve the chemical stability of BaCeO3, Ti4+ was introduced into B site of BaCeO3 to modify the chemical stability. XRD test demonstrates that \textBaC\texte0.6\textT\texti0.2\textY0.2\textO3 - d {\text{BaC}}{{\text{e}}_{0.6}}{\text{T}}{{\text{i}}_{0.2}}{{\text{Y}}_{0.2}}{{\text{O}}_{3 - \delta }} (BCTY) keeps its original pervoskite-type structure at a high doping level of 20%. After exposure in 94% N2 + 3% CO2 + 3% H2O at 700 °C for 10 h, BCTY exhibited adequate chemical stability while decomposition was found in \textBaC\texte0.8\textY0.2\textO3 - d {\text{BaC}}{{\text{e}}_{0.8}}{{\text{Y}}_{0.2}}{{\text{O}}_{3 - \delta }} (BCY). Accordingly, the conductivity of BCTY reaches 0.0072 S/cm at 700 °C in humidified hydrogen which is a little lower than BCY (0.0085). Besides, BCTY displayed better sintering characteristics than BCY at high temperatures and the relative density reaches 96.4% and 94.8%, respectively. The two samples also exhibited similar thermal expansion behavior from 30 to 1,000 °C. A fuel cell with BCTY as electrolyte exhibited 244 mW/cm2 at 700 °C and the stable short-term performance further proved the stability of BCTY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号