首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
《Solid State Ionics》2006,177(35-36):3087-3091
Pr2NiO4-based oxide was studied as a new mixed electronic and oxide ionic conductor for the oxygen permeation membrane. It was found that Pr2NiO4 doped with Cu and Fe for Ni site exhibits the relatively high oxygen permeation rate. Doping second cation to Ni site is effective for improving the oxygen permeation rate and the trivalent cation seems to be effective for increasing the oxygen permeation rate. Among the examined cation, the highest oxygen permeation rate was obtained by doping 5 mol% Fe. The oxygen permeation rate was also significantly affected by the surface catalyst and the highest oxygen permeation rate of 80 μmol·min 1·cm 2 at 1273 K was achieved by using La0.1Sr0.9Co0.9Fe0.1O3 for the surface catalyst. Since the electrical conductivity slightly decreased with decreasing PO2 and it dropped significantly at PO2 = 10 19 atm, chemical stability of Pr2NiO4-based oxide seems to be reasonably high. Application of this new mixed conductor for the oxygen permeation membrane under the CH4 partial oxidation was also studied and it was confirmed that the oxygen permeation rate much improved under the CH4 oxidation condition and this Pr2NiO4 can be used for the oxygen permeation membrane for the CH4 partial oxidation.  相似文献   

2.
《Solid State Ionics》2009,180(40):1633-1639
The total conductivity and oxygen permeation properties of dense SrCoFeOx membranes synthesized from the solid state method were studied in the temperature range of 700–900 °C. The SrCoFeOx membranes consist of an intergrowth (Sr4Fe6  xCoxO13 ± δ), perovskite (SrFe1  xCoxO3  δ), and spinel (Co3  xFexO4) phase. SrCoFeOx exhibits n-type and p-type conduction at low and high oxygen partial pressures, respectively, and has a total conductivity of 16.5 S/cm at 900 °C in air. The oxygen permeation fluxes for SrCoFeOx and SrFeCo0.5Ox membranes were measured with either an inert or carbon monoxide sweep gas. The oxygen permeation fluxes were higher through SrCoFeOx membranes than SrFeCo0.5Ox membranes and can be attributed to a difference in the amount and makeup of the perovskite phase present in each composition. The oxygen permeation fluxes with a carbon monoxide sweep gas were approximately two orders of magnitude larger than the fluxes measured with an inert sweep gas for both compositions. The large oxygen permeation fluxes observed with a carbon monoxide sweep are due to a higher driving force for oxygen transport and a reaction on the sweep side of the membrane that maintains a low oxygen partial pressure.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2269-2273
Iron-doped Pr2Ni0.8Cu0.2O4 was studied as a new mixed electronic and oxide-ionic conductor for use as an oxygen-permeating membrane. An X-ray diffraction analysis suggested that a single phase K2NiF4-type structure was obtained in the composition range from x = 0 to 0.05 in Pr2Ni0.8  xCu0.2FexO4. It is considered that the doped Fe is partially substituted at the Ni position in Pr2NiO4. The prepared Pr2NiO4-based oxide exhibited a dominant hole conduction in the PO2 range from 1 to 10 21 atm. The electrical conductivity of Pr2Ni0.8−xCu0.2FexO4 is as high as 102 S cm 1 in the temperature range of 873–1223 K and it gradually decreased with the increasing amount of Fe substituted for Ni. The oxygen permeation rate was significantly enhanced by the Fe doping and it was found that the highest oxygen permeation rate (60 μmol min 1 cm 2) from air to He was achieved for x = 0.05 in Pr2Ni0.8  xCu0.2FexO4. Since the chemical stability of the Pr2NiO4-based oxide is high, Pr2Ni0.75Cu0.2Fe0.05O4 can be used as the oxygen-separating membrane for the partial oxidation of CH4. It was observed that the oxygen permeation rate was significantly improved by changing from He to CH4 and the observed permeation rate reached a value of 225 μmol min 1 cm 2 at 1273 K for the CH4 partial oxidation.  相似文献   

4.
Mixed electron hole and oxide ion conducting perovskite-type oxides, La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ (0  x  1.0), were prepared by solid state reaction. The phase stability and the oxygen permeation properties of the oxides were examined as a function of the content of Cr. La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ has a perovskite related tetragonal phase with x = 0.1 to 0.8. The total electrical conductivity of La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ increases with increasing x. The oxygen permeation flux across the La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ membranes at higher temperatures increases with x up to x = 04. The maximum oxygen permeation flux of 1.6 × 10? 7 mol? 1 cm? 2 at 1100 °C in a oxygen activity gradient of air/10? 2 Pa is observed in La0.8Sr0.2(Ga0.8Mg0.2)0.6Cr0.4O3 ? δ. This perovskite-type oxide is stable under an oxygen partial pressure of 7 × 10? 10 Pa at 1000 °C.  相似文献   

5.
《Solid State Ionics》2006,177(19-25):1725-1728
Apatite-type La10  xSi6  yAlyO27  3x/2  y/2 (x = 0–0.33; y = 0.5–1.5) exhibit predominant oxygen ionic conductivity in a wide range of oxygen partial pressures. The conductivity of silicates containing 26.50–26.75 oxygen atoms per formula unit is comparable to that of gadolinia-doped ceria at 770–870 K. The average thermal expansion coefficients are (8.7–10.8) × 10 6 K 1 at 373–1273 K. At temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics and a moderate degradation of the ionic transport with time are observed under reducing conditions, thus limiting the operation temperature of Si-containing solid electrolytes.  相似文献   

6.
(La,Sr)FeO3 mixed conducting perovskites are considered as interesting candidates for oxygen separation membranes but they suffer from limited structural stability in a large oxygen partial pressure (pO2) gradient, because of their propensity for chemical expansion. Partial substitution of Fe with more stable elements tends to improve the stability while penalizing the electronic and ionic conductivities.In this study, we investigate the effect of 10% Ta substitution on the oxygen transport properties and stability of La0.5Sr0.5FeO3. For this purpose, the material was evaluated as a membrane in a CPOX reactor. The oxygen permeation through a ~ 3 cm2 pellet sample was first measured under air/Ar gradient in the temperature range of 800 to 1000 °C. The measured flux was 0.1 µmol cm? 2 s? 1 at 900 °C, which was a factor of 2 lower than for the Ta-free material. Methane was then introduced into the system and reacted in a catalytic bed with oxygen that has permeated through the membrane to form syngas (H2, CO). As a result, the oxygen flux increased by a factor of 9, reaching 0.9 µmol cm? 2 s? 1 at 900 °C. The reactor was operated at 1000 °C for another 1000 h. During this time, the oxygen permeation flux decayed by ca. 4%/1000 h.The test was stopped after more than 2000 h of operation and the membrane analyzed by electron microscopy.  相似文献   

7.
In-situ gas-injection transmission electron microscopy revealed that a pillar grew at the edge of the interface of a gold nanoparticle and a TiO2 substrate during exposure to O2 gas at 100 Pa. The pillar was found to have a titanium-deficient chemical composition of Ti1 ? xO2 (x > 0) by electron energy loss spectroscopy (EELS). The spectra showed a chemical shift of oxygen and titanium ions to have ionic states of Ti3+ and Oy? (y < 3/2). The formation of the Ti1 ? xO2 at the contact edge of gold–Ti1 ? xO2 interface is discussed from the perspective of an O2 affinity, which plays an important role in CO oxidation process of supported gold particle.  相似文献   

8.
《Solid State Ionics》2006,177(19-25):1811-1817
Structural, electronic and transport properties of LFN (LaFe1−zNizO3) and LSCFN (La1−xSrxCo1−y zFeyNizO3) perovskites synthesized by a modified citric acid method were studied. Structure of the samples was characterized by X-ray studies with Rietveld method analysis. Magnetic properties and valence states of iron ions were characterized by 57Fe Moessbauer spectroscopy performed at RT, which were found to be greatly dependent on the chemical composition of the samples. Electrical conductivity was measured in the 20–800 °C temperature range and for some compositions relatively high values (exceeding 100 S cm 1) were observed in the 600–800 °C range. Chemical stability studies in relation to Ce0.8Gd0.2O1.9 electrolyte, performed for selected perovskite samples, revealed decreasing stability with increasing Ni concentration and formation of solid solutions in CGO/perovskite composites. The coefficient of thermal expansion (CTE) of LFN perovskites was found to match that of CGO electrolyte (CTE in the 10–13 · 10 6 K 1 range).  相似文献   

9.
LaxSr1 ? xCoyFe1 ? yO3 ? δ (LSCF) represents one of the state-of-the-art cathode materials for solid oxide fuel cells (SOFCs) due primarily to its high ionic and electronic conductivity. In this study, a one-step infiltration process has been developed to deposit, on the surface of a porous LSCF cathode, a thin film (50–100 nm) of Sm0.5Sr0.5CoO3 ? δ (SSC), which is catalytically more active for oxygen reduction. Electrochemical impedance spectroscopy reveals that the SSC coating has dramatically reduced the polarization resistance of the cathode, achieving area-specific resistances of 0.036 Ω cm2 and 0.688 Ω cm2 at 750 °C and 550 °C, respectively. It has also maintained the stability of LSCF cathodes. In particular, the peak power densities are increased by ~ 22% upon the infiltration of SSC onto the porous LSCF cathodes of our best performing cells. These results demonstrate that a conductive backbone (e.g., LSCF) coated with a catalytic film (e.g., SSC) is an attractive approach to achieving an active and stable SOFC cathode for low-temperature solid oxide fuel cells.  相似文献   

10.
《Solid State Ionics》2006,177(33-34):2917-2921
The structural stability under reducing environment and oxygen permeation fluxes of perovskite-type BaCexFe1−xO3−δ (0  x  0.15) ceramic membranes were investigated. The XRD results showed that 5% of cerium doping into the perovskite B-site can make the BaFeO3−δ transform from the hexagonal structure to the cubic structure, and make the structure stable under 10% H2–Ar mixed gas at 900 °C for 1 h, but breaks down after 5 h. Lattice parameters and oxygen non-stoichiometry of the as-prepared and reduced samples were measured. Oxygen permeation fluxes of the membranes were measured between 700 and 950 °C. Oxygen permeation during the cooling and heating circles showed that 5% of cerium doping into the perovskite B-site can avoid the phase transformation. The optimum cerium-doped amount on the B-sites was found to be 10%.  相似文献   

11.
《Solid State Ionics》2006,177(19-25):1807-1810
The crystal chemistry and mixed conductor properties of the n = 2 member of the Ruddlesden–Popper (R–P) phases Sr3−xLaxFe2−yNiyO7−δ with 0  x  0.3 and 0  y  1.0 have been studied at high temperature. High-temperature X-ray diffraction and thermogravimetric measurements of the equilibrium pO2 (10 5  pO2  1 atm) in the temperature range 400  T  1000 °C indicate that the Sr3FeNiO7−δ phase is able to accommodate a large oxygen non-stoichiometry (δ  1.5) without structural transformations. The electrical conductivity and oxygen permeability increase with the substitution of Ni for Fe in the range 550  T  1000 °C. The electrical transport of the Sr3FeNiO7−δ phase is thermally activated and the activation energy decreases with the substitution of Ni for Fe for a given oxygen content. The increase in the oxygen permeation flux with increasing Ni content is due to an increasing oxygen non-stoichiometry and a lower activation energy for permeation.  相似文献   

12.
《Solid State Ionics》2006,177(5-6):595-600
Oxygen permeation fluxes across the dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membrane disks were measured under an air/helium oxygen partial pressure gradient at high pressures (up to 10 atm) and various temperatures (973–1123 K). The fabricated BSCFO membrane exhibited good oxygen permeability with a high oxygen permeation flux of 2.01 ml min 1cm 2 (thickness: 1.37 mm) at 1123 K and 10 atm. Oxygen permeation results were analyzed theoretically using the surface exchange current model. The dependences of the oxygen permeation fluxes on the oxygen partial pressure gradient, suggested that the bulk oxygen ionic diffusion was the rate-limiting step for the overall oxygen permeation process across the BSCFO membrane. The ambipolar diffusion coefficients (Da), the oxygen vacancy diffusion coefficients (Dv) and the oxygen ionic conductivities (σi) of the BSCFO material at different temperatures (973–1123 K) were calculated. It was found that BSCFO possessed high oxygen diffusion coefficients and ionic conductivities, which resulted in the good oxygen permeability of BSCFO. In addition, the BSCFO membrane exhibited good stability of oxygen permeation at 1123 K, while the deterioration of oxygen permeation stability was observed at 1098 K due to structural changes occurring at the surface of the BSCFO membrane disk as demonstrated by XRD.  相似文献   

13.
Equilibrium of 1:2:3 superconductors (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy (this compound has in the past variously denoted as CLBLCO, CLBCO or CaLaBaCuO) with oxygen was studied for x=0.1 and x=0.4 in the temperature range of 150–950 °C under 1 atm. O2. The main process is the reversible reaction −Cu32+O6.625+0.25O2=−Cu22+Cu3+O7.125 which is completed with the formation of one Cu3+. The enthalpy (in kJ/mol CLBLCO) and entropy (in J(mol CLBLCO)−1K−1) of this reaction were calculated from the temperature dependence of the equilibrium constant. The values are ΔH=−33.1 and ΔS=−29.9 for x=0.1 and ΔH=−49.4 and ΔS=−42.7 for x=0.4.It was found that the equilibrium of ceramic pellet of CLBLCO with oxygen cannot be practically achieved below 300 °C while the equilibrium for powder is achieved even at 200 °C. Low rate of reaction of CLBLCO with oxygen causes the problem in low temperature equilibration. In contrast, diffusion of oxygen ions in the ceramics is observed even at 200 °C. This diffusion proceeds without the change of the oxygen content and may be applied in order to improve the homogeneity of the distribution of oxygen ions.  相似文献   

14.
The black silicon has been produced by plasma immersion ion implantation (PIII) process. The microstructure and optical reflectance are characterized by field emission scanning electron microscope and spectrophotometer. Results show that the black silicon appears porous or needle-like microstructure with the average reflectance of 4.87% and 2.12%, respectively. The surface state is investigated by X-ray photoelectron spectroscopy (XPS) technique. The surface of the black silicon is composed of silicon, carbon, oxygen and fluorine element. The formation of SixOyFz in the surface of black silicon can be proved clearly by the O 1s, F 1s and Si 2p XPS spectra. The formation mechanism of the black silicon produced by PIII process can be obtained from XPS results. The porous or needle-like structure of the black silicon will be formed under the competition of SFx+ (x  5) and F+ ions etching effect, SixOyFz passivation and ion bombardment.  相似文献   

15.
《Solid State Ionics》2006,177(26-32):2285-2289
Oxygen-ionic and electronic transport in dense (SrFe)1−x(SrAl2)xOz composites, consisting of strontium-deficient Sr(Fe,Al)O3-δ and SrAl2O4 phases, is determined by the properties of perovskite-like solid solution. Increasing the content of SrAl2O4, with a total conductivity as low as 5 × 10 7   10 S × cm 1 at 973–1273 K in air, results in the gradual decrease of the partial conductivities, but also enables the suppression of thermal expansion. Compared to single-phase SrFe1−xAlxO3-δ, (SrFe)1−x(SrAl2)xOz composites exhibit enhanced thermomechanical properties, while the oxygen permeability of these materials has similar values. The composite membranes exhibit stable performance under air/(H2–H2O–N2) and air/(CH4–He) gradients at 973–1173 K. The oxidation of dry methane by oxygen permeating through (SrFe)0.7(SrAl2)0.3Oz results in dominant total oxidation, suggesting the necessity to incorporate a reforming catalyst into the ceramic reactors for natural gas conversion.  相似文献   

16.
《Solid State Ionics》2006,177(19-25):1779-1783
Ceramic perovskite solid solutions (La0.9Sr0.1)[(Ga1−xMx)0.8Mg0.2]O3−y, 0  x  0.5, M = Fe, Ni, Cr (systems I–III) and brownmillerite solid solutions (La0.2Sr1.8)[Ga(Fe1−xMgx)]O5−z, 0  x  0.5, (system IV) have been prepared. The samples have been studied by X-ray diffraction and electron microscopy methods, dielectric spectroscopy and permeability measurements. The correlation between the composition, unit cell parameter changes, electrical transport and oxygen permeation properties has been revealed. Introduction of transition metals (Fe, Ni, or Cr), substituting for gallium, ensures the enhancement of the electronic constituent of the conductivity in the perovskite systems I–III. Stabilization of the transition metal high valence states 4+ or 5+ has been suggested for compositions I and III. This leads to a unit cell volume contraction and provides a decrease in the concentration of oxygen vacancies. The oxygen permeability reaches its maximum values in compositions I–III with x  0.3. On the contrary, increasing concentration of the doping element with lower valence state (magnesium), substituting for iron, determines the expansion of the brownmillerite unit cell volume and provides an increase of the oxygen vacancy concentration, which in turn, favors the enhancement of oxygen permeability of composition IV.  相似文献   

17.
《Solid State Ionics》2006,177(19-25):1587-1590
Oxygen flux through La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5 and 1) membranes has been determined as a function of oxygen partial pressure, temperature and time. The flux was diffusion controlled for low pO2 gradients while larger pO2 gradients caused a surface exchange controlled flux. The activation energy of the oxygen flux varied in the range 67–105 kJ/mol. After about 1 month at 1150 °C in an O2/N2 gradient the membranes were examined for kinetic demixing and decomposition. On the reducing side only the original perovskite phase was observed at the surface, while on the oxidizing side various secondary phases were observed dependent on the composition at the Fe/Co-site and the Sr + La/Fe + Co ratio of the materials. Moreover, kinetic demixing of the main perovskite phase was also observed, particularly near the surfaces. Grain growth and pore coalescence resulting in membrane expansion were also observed in some cases. The present findings are discussed with regard to the long term chemical stability of the membranes.  相似文献   

18.
Transition metal and rare earth diffusion coefficients at 1323 K in Dy2−yNdy(Fe1−xCox)14B were determined by field emission energy dispersive spectroscopy compositional analysis of diffusion couple specimens. Various arrangements of component materials and temperatures were examined in order to understand the mechanisms affecting diffusion of the components and to predict the stability of functionally graded microstructures consisting of a dysprosium-rich (Dy2−yNdy(Fe1−xCox)14B) outer layer and a neodymium-rich (Nd2(Fe1−xCox)14B) interior. Estimates of the mutual interdiffusion coefficients of Dy, Nd, Fe, and Co in this system were obtained from the preparation of arc melted and annealed polycrystalline specimens, assuming that the diffusion coefficients were independent of concentration (Grube solution). Fifteen diffusion couples were prepared and heat treated at 1323 K for various times in order to provide data for calculation of the diffusion coefficients. The results indicate that the diffusion coefficients of Fe and Co (DFe=3.28×10−10 cm2/s and DCo=7.63×10−10 cm2/s) were significantly higher at 1323 K in this system than those for Dy and Nd (DNd=2.3×10−12 cm2/s and DDy=2.9×10−12 cm2/s).  相似文献   

19.
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 µm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.  相似文献   

20.
Chemical interactions between the Ba2YCu3O6+x superconductor and the LaMnO3 buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba2YCu3O6+x–LaMnO3 system. The Ba2YCu3O6+x–LaMnO3 join within the BaO–(Y2O3–La2O3)–MnO2–CuOx multi-component system is non-binary. At 810 °C (pO2 = 100 Pa) and at 950 °C in purified air, four phases are consistently present along the join, namely, Ba2?x(La1+x?yYy)Cu3O6+z, Ba(Y2?xLax)CuO5, (La1?xYx)MnO3, (La,Y)Mn2O5. The crystal chemistry and crystallography of Ba(Y2?xLax)CuO5 and (La1?xYx)Mn2O5 were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y2?xLax)CuO5 are Ba(Y1.8La0.2)CuO5 and Ba(Y0.1La1.9)CuO5, respectively. The structure of Ba(Y1.8La0.2)CuO5 is Pnma (No. 62), a = 12.2161(5) Å, b = 5.6690(2) Å, c = 7.1468(3) Å, V = 494.94(4) Å3, and Dx = 6.29 g cm?3. YMn2O5 and LaMn2O5 do not form solid solution at 810 °C (pO2 = 100 Pa) or at 950 °C (in air). The structure of YMn2O5 was confirmed to be Pbam (No. 55), a = 7.27832(14) Å, b = 8.46707(14) Å, c = 5.66495(10) Å, and V = 349.108(14) Å3. A reference X-ray pattern was prepared for YMn2O5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号