首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burneau A  Tazi M  Bouzat G 《Talanta》1992,39(7):743-748
Raman spectra are used to determine the formation constants of uranyl sulphate complexes in aqueous solutions at 20 degrees and remedy the confusion existing in this area in the available literature. Solutions with a varying total sulphate concentration and an ionic strength lower than 0.4M are analysed. The species UO(2)SO(4) and UO(2)(SO(4))(2-)(2) are characterized by a resolved Raman band at 861 cm(-1) and an unresolved one at 852 cm(-1), corresponding to the uranyl symmetrical stretching vibration. The equilibrium constants, in term of activity (standard state 1M), are found to be about 1400 and 11, respectively, for the consecutive reactions: UO(2+)(2)(aq)+SO(2-)(4)(aq)=UO(2)SO(4)(aq) and UO(2)SO(4)(aq)+SO(2-)(4)(aq)=UO(2)(SO(4))(2-)(2)(aq).  相似文献   

2.
Saad EM  Mansour RA  El-Asmy A  El-Shahawi MS 《Talanta》2008,76(5):1041-1046
The retention profile of uranium (VI) as uranyl ions (UO(2)(2+)) from the aqueous media onto the solid sorbent date pits has been investigated. The sorption of UO(2)(2+) ions onto the date pits was achieved quantitatively (98+/-3.4%, n=5) after 15 min of shaking at pH 6-7. The sorption of UO(2)(2+) onto the used sorbent was found fast, followed by a first order rate equation with an overall rate constant, k of 4.8+/-0.05 s(-1). The sorption data were explained in a manner consistent with a "solvent extraction" mechanism. The sorption data were also subjected to Freundlich isotherm model over a wide range of equilibrium concentration (1-20 microgmL(-1)) of UO(2)(2+). The results revealed that, a "dual-mode" of sorption mechanism involving absorption related to "solvent extraction" and an added component for "surface adsorption" is most likely operated simultaneously for uranyl ions uptaking the solid sorbent. The thermodynamic parameters (-DeltaH, DeltaS and DeltaG) of the uranyl ions uptake onto the date pits indicated that, the process is endothermic and proceeds spontaneously. The interference of some diverse ions on the sorption UO(2)(2+) from the aqueous media onto the date pits packed column was critically investigated and the data revealed quantitative collection of UO(2)(2+) at 5 mLmin(-1) flow rate. The retained UO(2)(2+) was recovered quantitatively with HCl (3.0 molL(-1)) from the column at 5 mLmin(-1) flow rate. The mode of binding of the date pits with UO(2)(2+) was determined from the IR spectral date bits before and after extraction of uranium (VI). The height equivalent (HETP) and the number (N) of theoretical plates of the date pits packed column were determined from the chromatograms. Complete retention and recovery of UO(2)(2+) spiked to wastewater samples by the date pits packed column was successfully achieved. The capacity of the used sorbent towards retention of uranium (VI) from aqueous solutions was much better than the most common sorbents.  相似文献   

3.
This work presents an investigation of the interaction mechanisms between uranyl ions and a solid phosphate, the zirconium oxophosphate: Zr2O(PO4)2. Both thermodynamic and structural points of view are developed. Indeed, prior to any simulation of the retention data, it is necessary to precisely characterize the system under study in order to gain information at a molecular scale. First, the intrinsic surface properties of this synthetic compound have been investigated for different temperatures ranging from 25 to 90 degrees C. Mass and potentiometric titrations show that the surface site density remains constant between 25 and 90 degrees C, while the experimental point of zero charge slightly decreases from 4.8 to 4.5 with an increasing temperature. The potentiometric titration data are simulated, for each temperature, using the constant capacitance model and taking into account two surface sites ([TRIPLE BOND]ZrO and [TRIPLE BOND]PO) with a total surface site density equal to 7.0 sites nm(-2). For both reactive sites, the intrinsic protonation constants do not change with the temperature, while the deprotonation ones increase. These results led to the determination of the associated enthalpy and entropy changes according to the van't Hoff relation. Second, the speciation of U(VI) at the solid/solution interface has been studied using two complementary spectroscopic techniques probing the sorbed uranyl ions: time-resolved laser-induced fluorescence spectroscopy (TRLFS) and X-ray absorption spectroscopy (EXAFS). The substrate presents two different reactive surface sites against uranium retention, which are constituted by the oxygen atoms of the surface PO4 groups and the oxygen atoms linked to the zirconium atoms. Two inner-sphere complexes are thus present on the substrate, their relative proportion depending on the pH value of the suspension. The effects of the temperature (25-90 degrees C) on the surrounding uranium were checked using the TRLFS technique. The uranyl sorption constants onto the Zr2O(PO4)2 substrate were determined taking into account the structural investigation. The surface complexation modeling was performed using the constant capacitance model included in the FITEQLv4.0 code. The four adsorption edges obtained at 25, 50, 75, and 90 degrees C were simulated. The modeling of these experimental data was realized considering two surface complexes (([TRIPLE BOND]ZrOH)2UO(2+)2, ([TRIPLE BOND]PO)2UO2) according to the structural investigation. The constant value associated with the ZrO site does not change with the temperature, while the one corresponding to the PO site increases. Finally, the enthalpy and entropy changes associated with the uranyl sorption constants have been determined using the van't Hoff relation.  相似文献   

4.
A detailed study, using a panel of spectroscopic analytical methods, of the complexation between 1-hydroxyethane-1,1'-diphosphonic acid (HEDP) and uranyl ion (UO(2)(2+)) is reported. Results suggest that the metal complex is present as only 1:1 (metal/ligand) species at low concentration (<10(-)(4) M). The conditional constants of this complex were determined at various pH using time-resolved laser-induced fluorescence (TRLIF) and electrospray ionization mass spectrometry (ESI-MS). Further investigations indicate the presence of a 1:2 (metal/ligand) complex at higher concentrations ( approximately 10(-)(2) M). Selectivity studies as well as structural aspects are presented.  相似文献   

5.
The sorption reactions of uranium(VI) at the ferrihydrite(Fh)-water interface were investigated in the absence and presence of atmospherically derived CO(2) by time-resolved in situ vibrational spectroscopy. The spectra clearly show that a single uranyl surface species, most probably a mononuclear bidentate surface complex, is formed irrespective of the presence of atmospherically derived CO(2). The character of the carbonate surface species correlates with the presence of the actinyl ions and changes from a monodentate to a bidentate binding upon sorption of U(VI). From the in situ sorption experiments under mildly acid conditions, the formation of a ternary surface complex is derived where the carbonate ligands coordinate bidentately to the uranyl moiety (≡UO(2)(O(2)CO)(x)). Furthermore, the release reaction of the carbonate ligands from the ternary surface complex is found to be considerably retarded compared to those from the pristine surface suggesting a tighter bonding of the carbonate ions in the ternary complex. Simultaneous sorption of U(VI) and atmospherically derived carbonate onto pristine Fh shows formation of binary monodentate carbonate surface complexes prior to the formation of the ternary complexes.  相似文献   

6.
A uranyl peroxide, Na5[(UO2)3(O2)4(OH)3](H2O)13, with an open sheet of uranyl polyhedra has been synthesized under ambient conditions and structurally characterized. The structure (orthorombic, Cmca, a = 23.632(1) A, b = 15.886(1) A, c = 13.952(1) A, V = 5237.7 A(3), and Z = 8) consists of sheets composed of two symmetrically unique uranyl (UO2)2+ ions that are coordinated equatorially by two peroxide groups and two OH(-) groups, forming distorted uranyl hexagonal bipyramids of composition (UO2)(O2)2(OH)2(4-). The uranyl bipyramids are connected into sheets with openings with dimensions 13.7 A along [010] and 15.9 A along [100]. The shortest dimension of the cavity is 8.08 A. Sheets of two-dimensionally polymerized uranyl polyhedra are the most common structural type of inorganic uranyl phases; however, such an open topology has never been observed.  相似文献   

7.
8.
Morris DE 《Inorganic chemistry》2002,41(13):3542-3547
Detailed voltammetric results for five uranyl coordination complexes are presented and analyzed using digital simulations of the voltammetric data to extract thermodynamic (E(1/2)) and heterogeneous electron-transfer kinetic (k(0) and alpha) parameters for the one-electron reduction of UO(2)(2+) to UO(2)(+). The complexes and their corresponding electrochemical parameters are the following: [UO(2)(OH(2))(5)](2+) (E(1/2) = -0.169 V vs Ag/AgCl, k(0) = 9.0 x 10(-3) cm/s, and alpha = 0.50); [UO(2)(OH)(5)](3-) (-0.927 V, 2.8 x 10(-3) cm/s, 0.46); [UO(2)(C(2)H(3)O(2))(3)](-) (-0.396 V, approximately 0.1 cm/s, approximately 0.5); [UO(2)(CO(3))(3)](4-) (-0.820 V, 2.6 x 10(-5) cm/s, 0.41); [UO(2)Cl(4)](2-) (-0.065 V, 9.2 x 10(-3) cm/s, 0.30). Differences in the E(1/2) values are attributable principally to differences in the basicity of the equatorial ligands. Differences in rate constants are considered within the context of Marcus theory of electron transfer, but no specific structural change(s) in the complexes between the two oxidation states can be uniquely identified with the underlying variability in the heterogeneous rate constants and electron-transfer coefficients.  相似文献   

9.
The isomorphous compounds NH(4)[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (1), K[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (2), Li(3)O[(UO(6))(2)(UO(2))(9)(GeO(4))(GeO(3)(OH))] (3), and Ba[(UO(6))(2)(UO(2))(9)(GeO(4))(2)] (4) were synthesized by hydrothermal reaction at 220 °C. The structures were determined using single crystal X-ray diffraction and refined to R(1) = 0.0349 (1), 0.0232 (2), 0.0236 (3), 0.0267 (4). Each are trigonal, P(3)1c. 1: a = 10.2525(5), c = 17.3972(13), V = 1583.69(16) ?(3), Z = 2; 2: a = 10.226(4), c = 17.150(9), V = 1553.1(12) ?(3), Z = 2; 3: a = 10.2668(5), c = 17.0558(11), V = 1556.94(15) ?(3), Z = 2; 4: a = 10.2012(5), c = 17.1570(12), V = 1546.23(15) ?(3), Z = 2. There are three symmetrically independent U sites in each structure, two of which correspond to typical (UO(2))(2+) uranyl ions and the other of which is octahedrally coordinated by six O atoms. One of the uranyl ions donates a cation-cation interaction, and accepts a different cation-cation interaction. The linkages between the U-centered polyhedra result in a relatively dense three-dimensional framework. Ge and low-valence sites are located within cavities in the framework of U-polyhedra. Chemical, thermal, and spectroscopic characterizations are provided.  相似文献   

10.
The pH dependence of uranyl(VI) complexation by citric acid was investigated using Raman and attenuated total reflection FTIR spectroscopies and electrospray ionization mass spectrometry. pH-dependent changes in the nu(s)(UO(2)) envelope indicate that three major UO(2)(2+)-citrate complexes with progressively increasing U=O bond lengths are present over a range of pH from 2.0 to 9.5. The first species, which is the predominant form of uranyl(VI) from pH 3.0 to 5.0, contains two UO(2)(2+) groups in spectroscopically equivalent coordination environments and corresponds to the [(UO(2))(2)Cit(2)](2)(-) complex known to exist in this pH range. At pH values >6.5, [(UO(2))(2)Cit(2)](2)(-) undergoes an interconversion to form [(UO(2))(3)Cit(3)](3)(-) and (UO(2))(3)Cit(2). ESI-MS studies on solutions of varying uranyl(VI)/citrate ratios, pH, and solution counteranion were successfully used to confirm complex stoichiometries. Uranyl and citrate concentrations investigated ranged from 0.50 to 50 mM.  相似文献   

11.
Photolysis of the uranyl(VI) Schiff base complex UO2(tBu4-salphen)(THF) (1a) with cobaltocene in THF affords [Cp2Co][UO2(tBu4-salphen)(OH)] (2) in high yield while irradiation in toluene yields no reaction. Electronic emission spectra of 1a reveal a large Stokes' shift in toluene similar to that observed in the free ligand, while in THF the structural rearrangement responsible for this shift is blocked. Instead, the ligand-centered excited state is redirected to the uranyl(VI) center by way of energy transfer, thus generating 2 from the intramolecular activation of a coordinated THF molecule.  相似文献   

12.
Novel open-framework alkali metal uranyl periodates, having the formula A[(UO2)3(HIO6)(OH)(O)(H2O)].1.5H2O (A = Li, Na, K, Rb, Cs), have been prepared through mild hydrothermal synthesis. These isostructural compounds contain distorted UO7 pentagonal bipyramids that are linked through a uranyl (UO22+) to uranyl cation-cation interaction. This interaction arises from a single axial uranyl oxygen coordinating at an equatorial site of an adjacent uranyl unit. These uranium oxide polyhedra are further bound by IO6 distorted octahedra creating an open-framework structure whose channels contain the alkali metal cations.  相似文献   

13.
A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln(2)(H(2)O)(6)(mel) possesses a 3D framework built up from the connection of isolated LnO(6)(H(2)O)(3) polyhedra (tricapped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO(2))(3)(H(2)O)(6)(mel)·11.5H(2)O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3(6) net. The third structural type, (UO(2))(2)Ln(OH)(H(2)O)(3)(mel)·2.5H(2)O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a heterometallic dinuclear motif. The 9-fold coordinated Ln cation, LnO(5)(OH)(H(2)O)(3), is linked to the 7-fold coordinated uranyl (UO(2))O(4)(OH) (pentagonal bipyramid) via one μ(2)-hydroxo group and one μ(2)-oxo group. The latter is shared between the uranyl bonding (U═O = 1.777(4)/1.779(6) ?) and a long Ln-O bonding (Ce-O = 2.822(4) ?; Nd-O = 2.792(6) ?). This unusual linkage is a unique illustration of the so-called cation-cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic-inorganic layers that are linked to each other via discrete uranyl (UO(2))O(4) units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 °C and then transformed into the basic uranium oxide (U(3)O(8)) together with U-Ln oxide with the fluorite structural type ("(Ln,U)O(2)"). At 1400 °C, only fluorite type "(Ln,U)O(2)" is formed with the measured stoichiometry of U(0.63)Ce(0.37)O(2) and U(0.60)Nd(0.40)O(2-δ).  相似文献   

14.
The composition and equilibrium constants of the complexes formed in the binary U(VI)-hydroxide and the ternary U(VI)-hydroxide-peroxide systems have been studied using potentiometric and spectrophotometric data at 25 °C in a 0.100 M tetramethylammonium nitrate medium. The data for the binary U(VI) hydroxide complexes were in good agreement with previous studies. In the ternary system two complexes were identified, [UO(2)(OH)(O(2))](-) and [(UO(2))(2)(OH)(O(2))(2)](-). Under our experimental conditions the former is predominant over a broad p[H(+)] region from 9.5 to 11.5, while the second is found in significant amounts at p[H(+)] < 10.5. The formation of the ternary peroxide complexes results in a strong increase in the molar absorptivity of the test solutions. The absorption spectrum for [(UO(2))(2)(OH)(O(2))(2)](-) was resolved into two components with peaks at 353 and 308 nm with molar absorptivity of 16200 and 20300 M(-1) cm(-1), respectively, suggesting that the electronic transitions are dipole allowed. The molar absorptivity of [(UO(2))(OH)(O(2))](-) at the same wave lengths are significantly lower, but still about one to two orders of magnitude larger than the values for UO(2)(2+)(aq) and the binary uranyl(VI) hydroxide complexes. It is of interest to note that [(UO(2))(OH)(O(2))](-) might be the building block in cluster compounds such as [UO(2)(OH)(O(2))](60)(60-) studied by Burns et al. (P. C. Burns, K. A. Kubatko, G. Sigmon, B. J. Fryer, J. E. Gagnon, M. R. Antonio and L. Soderholm, Angew. Chem. 2005, 117, 2173-2177). Speciation calculations using the known equilibrium constants for the U(vi) hydroxide and peroxide complexes show that the latter are important in alkaline solutions even at very low total concentrations of peroxide, suggesting that they may be involved when the uranium minerals Studtite and meta-Studtite are formed by α-radiolysis of water. Radiolysis will be much larger in repositories for spent nuclear fuel where hydrogen peroxide might contribute both to the corrosion of the fuel and to transport of uranium in a ground water system.  相似文献   

15.
Watson LA  Hay BP 《Inorganic chemistry》2011,50(6):2599-2605
Density functional theory calculations have been used to evaluate the geometries and energetics of interactions between a number of uranyl complexes and hydrogen bond donor groups. The results reveal that although traditional hydrogen bond donors are repelled by the oxo group in the [UO(2)(OH(2))(5)](2+) species, they are attracted to the oxo groups in [UO(2)(OH(2))(2)(NO(3))(2)](0), [UO(2)(NO(3))(3)](-), and [UO(2)Cl(4)](2-) species. Hydrogen bond strength depends on the equatorial ligation and can exceed 15 kcal mol(-1). The results also reveal the existence of directionality at the uranyl oxo acceptor, with a weak preference for linear U═O---H angles.  相似文献   

16.
We describe the synthesis, solid state and solution properties of two families of uranyl(VI) complexes that are ligated by neutral monodentate and anionic bidentate P=O, P=NH and As=O ligands bearing pendent phenyl chromophores. The uranyl(VI) ions in these complexes possess long-lived photoluminescent LMCT (3)Π(u) excited states, which can be exploited as a sensitive probe of electronic structure, bonding and aggregation behaviour in non-aqueous media. For a family of well defined complexes of given symmetry in trans-[UO(2)Cl(2)(L(2))] (L = Ph(3)PO (1), Ph(3)AsO (2) and Ph(3)PNH (3)), the emission spectral profiles in CH(2)Cl(2) are indicative of the strength of the donor atoms bound in the equatorial plane and the uranyl bond strength; the uranyl LMCT emission maxima are shifted to lower energy as the donor strength of L increases. The luminescence lifetimes in fluid solution mirror these observations (0.87-3.46 μs) and are particularly sensitive to vibrational and bimolecular deactivation. In a family of structurally well defined complexes of the related anion, tetraphenylimidodiphosphinate (TPIP), monometallic complexes, [UO(2)(TPIP)(thf)] (4), [UO(2)(TPIP)(Cy(3)PO)] 5), a bimetallic complex [UO(2)(TPIP)(2)](2) (6) and a previously known trimetallic complex, [UO(2)(TPIP)(2)](3) (7) can be isolated by variation of the synthetic procedure. Complex 7 differs from 6 as the central uranyl ion in 7 is orthogonally connected to the two peripheral ones via uranyl → uranium dative bonds. Each of these oligomers exhibits a characteristic optical fingerprint, where the emission maxima, the spectral shape and temporal decay profiles are unique for each structural form. Notably, excited state intermetallic quenching in the trimetallic complex 7 considerably reduces the luminescence lifetime with respect to the monometallic counterpart 5 (from 2.00 μs to 1.04 μs). This study demonstrates that time resolved and multi-parametric luminescence can be of value in ascertaining solution and structural forms of discrete uranyl(VI) complexes in non-aqueous solution.  相似文献   

17.
A study was carried out to understand the sorption of uranium (U) onto soil surface and identify the species of U on soil surface using X-Ray Photoelectron Spectroscopy (XPS). For the study soil was amended with uranyl nitrate and surface speciation study was carried out by investigating the energy region for U in spectrum. Analysis of spectrum revealed that U is present in U(VI) state. Deconvolution of XPS spectrum of U(VI) sorbed on soil surface revealed that U(VI) species such as, UO2 2+ and (UO2)x(OH) y (2x?y)+ form complex with silanol, aluminol and goethite sites. The possible surface complexation is: ≡Al(OH)2UO2 2+, ≡SiO2UO2, ≡SiO2(UO2)3(OH)5 and ≡Fe(OH)2UO2.  相似文献   

18.
The reactions of UO(3) with acidic aqueous chloride solutions resulted in the formation of two new polymeric U(VI) compounds. Single crystals of Cs(2)[(UO(2))(3)Cl(2)(IO(3))(OH)O(2)].2H(2)O (1) were formed under hydrothermal conditions with HIO(3) and CsCl, and Li(H(2)O)(2)[(UO(2))(2)Cl(3)(O)(H(2)O)] (2) was obtained from acidic LiCl solutions under ambient temperature and pressure. Both compounds contain pentagonal bipyramidal coordination of the uranyl dication, UO(2)(2+). The structure of 1 consists of infinite [(UO(2))(3)Cl(2)(IO(3))(mu(3)-OH)(mu(3)-O)(2)](2-) ribbons that run down the b axis that are formed from edge-sharing pentagonal bipyramidal [UO(6)Cl] and [UO(5)Cl(2)] units. The Cs(+) cations separate the chains from one another and form long ionic contacts with terminal oxygen atoms from iodate ligands, uranyl oxygen atoms, water molecules, and chloride anions. In 2, edge-sharing [UO(3)Cl(4)] and [UO(5)Cl(2)] units build up tetranuclear [(UO(2))(4)(mu-Cl)(6)(mu(3)-O)(2)(H(2)O)(2)](2-) anions that are bridged by chloride to form one-dimensional chains. These chains are connected in a complex network of hydrogen bonds and interactions of uranyl oxygen atoms with Li(+) cations. Crystal data: 1, orthorhombic, space group Pnma, a = 8.2762(4) A, b = 12.4809(6) A, c = 17.1297(8) A, Z = 4; 2, triclinic, space group P1, a = 8.110(1) A, b = 8.621(1) A, c = 8.740(1) A, Z = 2.  相似文献   

19.
Optimizations at the BLYP and B3LYP levels are reported for mixed uranyl-water/acetonitrile complexes [UO(2)(H(2)O)(5-n)(MeCN)(n)](2+) (n = 0-5), in both the gas phase and a polarizable continuum modeling acetonitrile. Car-Parrinello molecular dynamics (CPMD) simulations have been performed for these complexes in the gas phase, and for selected species (n = 0, 1, 3, 5) in a periodic box of liquid acetonitrile. According to structural and energetic data, uranyl has a higher affinity for acetonitrile than for water in the gas phase, in keeping with the higher dipole moment and polarizability of acetonitrile. In acetonitrile solution, however, water is the better ligand because of specific solvation effects. Analysis of the dipole moment of the coordinated water molecule in [UO(2)(H(2)O)(MeCN)(4)](2+) reveals that the interaction with the second-shell solvent molecules (through fairly strong and persistent O-H···N hydrogen bonds) causes a significant increase of this dipole moment (by more than 1 D). This cooperative polarization of water reinforces the uranyl-water bond as well as the water solvation via strengthened (UO(2))OH(2)···NCMe hydrogen bonds. Such cooperativity is essentially absent in the acetonitrile ligands that make much weaker (UO(2))NCMe···NCMe hydrogen bonds. Beyond the uranyl case, this study points to the importance of cooperative polarization effects to enhance the M(n+) ion affinity for water in condensed phases involving M(n+)-OH(2)···A fragments, where A is a H-bond proton acceptor and M(n+) is a hard cation.  相似文献   

20.
The complexation of uranium(VI) and samarium(III) with oxydiacetate (ODA) in 1.05 mol kg(-1) NaClO(4) is studied at variable temperatures (25-70 degrees C). Three U(VI)/ODA complexes (UO(2)L, UO(2)L(2)(2-), and UO(2)HL(2)(-)) and three Sm(III)/ODA complexes (SmL(j)((3-2)(j)+) with j = 1, 2, 3) are identified in this temperature range. The formation constants and the molar enthalpies of complexation are determined by potentiometry and calorimetry. The complexation of uranium(VI) and samarium(III) with oxydiacetate becomes more endothermic at higher temperatures. However, the complexes become stronger due to increasingly more positive entropy of complexation at higher temperatures that exceeds the increase in the enthalpy of complexation. The values of the heat capacity of complexation (Delta C(p) degrees in J K(-1) mol(-1)) are 95 +/- 6, 297 +/- 14, and 162 +/- 19 for UO(2)L, UO(2)L(2)(2-), and UO(2)HL(2)(-), and 142 +/- 6, 198 +/- 14, and 157 +/- 19 for SmL(+), SmL(2)(-), and SmL(3)(3-), respectively. The thermodynamic parameters, in conjunction with the structural information from spectroscopy, help to identify the coordination modes in the uranium oxydiacetate complexes. The effect of temperature on the thermodynamics of the complexation is discussed in terms of the electrostatic model and the change in the solvent structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号