首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From measurements of the influence of an electric field on the absorption spectrum of pyridine-N-oxide it is concluded that the 330 nm band is polarized perpendicular to the dipole moment, while the 280 nm transition moment lies parallel. Furthermore from these experiments the dipole moments in both excited states have been determined (Table 1). PARISER -PARR -POPLE -calculations as well as CNDO-calculations admit an assignment of the 330 nm band to an A1B1, π → π* transition and of the 280 nm band to an A1A1, π → π* transition. Thereby energy, polarization, intensity of the transition, and the dipole moments of the excited states have been taken into consideration. This assignment does not exclude the possibility of a weak n-π* transition at approximately the same wavelength as the A1B1 transition.  相似文献   

2.
The correlated, size-consistent, ab initio effective valence-shell dipole operator (μv) method is used to calculate dipole moments and transition dipole moments of the CH molecule and transition dipole moments of the CH+ ion as a function of internuclear distance. The dipole and transition dipole moments computed here compare well with those of other accurate ab initio methods. The transition dipole moments are then used to calculate oscillator strengths and radiative lifetimes for the AX and BA transitions of the CH+ ion and the AX transition of the CH molecule. Comparisons are made with the best available theoretical and experimental lifetimes. Finally, the CH ground-state dipole moment function is used to evaluate overtone intensities and to examine simple models of the CH overtone intensities in polyatomic molecules.  相似文献   

3.
Polarized reflection spectra of the first singlet transition of the α-crystalline form of 9,10-dichloroanthracene are reported. Crystal faces (001), (011) and (010) were examined in spectral range 450 to 350 nm at two temperatures, 5 K and 300 K. Two systems of transitions were observed. The first system is assigned to neutral excitons. Spectral similarities with unsubstituted anthracene and arguments based on the one-dimensional stacking of molecules are used to construct a model of the exciten band structures. The M-polarized ππ* molecular transition gives rise to a four branch band with two allowed transitions. The 0-0b (Ag → Au) transition lies 50–100 cm?1 above the bottom of the exciton band and the 0-0c′ (Ag → Bu) transition lies at the top of the band. In the reflection spectrum the Davydov splitting c′b for transverse excitons is 210 cm?1. The exciton band of the 00 molecular transition is not isolated but overlaps the two-particle manifold of the 0–1 vibronic transition. As a result of the 0–1c transition is unexpectedly strong in the spectra of the (010) face. The second system is polarized along the stack-axis a and starts 2500 cm?1 above the first system. It is tentatively assigned as |a(Ag → Bu) charge transfer exciton transition in agreement with earlier observations.  相似文献   

4.
Effect of anionic surfactant on the optical absorption spectra and redox reaction of basic fuchsin, a cationic dye, has been studied. Increase in the absorbance of the dye band at 546 nm with sodium dodecyl sulfate (SDS) is assigned to the incorporation of the dye in the surfactant micelles with critical micellar concentration (CMC) of 7.3 × 10?3 mol dm?3. At low surfactant concentration (<5 × 10?3 mol dm?3) decrease in the absorbance of the dye band at 546 nm is attributed to the formation of a dye–surfactant complex (1:1). The environment, in terms of dielectric constant, experienced by basic fuchsin inside the surfactant micelles has been estimated. The association constant (KA) for the formation of dye–SDS complex and the binding constant (KB) for the micellization of dye are determined. Stopped‐flow studies, in the premicellar region, indicated simultaneous depletion of dye absorption and formation of new band at 490 nm with a distinct isosbestic point at 520 nm and the rate constant for this region increased with increasing SDS concentration. The reaction of hydrated electron with the dye and the decay of the semireduced dye are observed to be slowed down in the presence of SDS. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 629–636, 2003  相似文献   

5.
The equilibrium geometries, excitation energies, force constants, and vibrational frequencies for four low-lying electronic states X 2A1, 2B1, 2B2, and 2A2 of the BF2 radical have been calculated at the MRSDCI level with a double zeta plus polarization basis set. Our calculated excitation energy for X2A12B1 is in agreement with available experimental data. The electronic transition dipole moments, oscillator strengths for the 2B1X2A1 and 2B2X2A1 transitions, radiative lifetimes for the 2B1 and 2B2 states, and the spin properties for the X2A1 state are calculated based on the MRSDCI wave functions, predicting results in reasonable agreement with available experimental data. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The electron spin dipole-dipole contribution to the zero field splitting has been evaluated for the 3A2 (n → π*) and 3A1 (π → π*) states of formaldehyde using a CI wave function constructed from contracted Gaussian-lobe functions. The values D = 0.539 cm?1 and E = 0.031 cm?1 were obtained for the 3A2(n → π*) state and D = ?0.588 cm?1 and E = 0.058 cm?1 were obtained for the 3A1 (π → π*) state using the CI wave function constructed from SCF orbitals of the respective parent configurations. An analysis of the effect of CI on the parameters is given for the 3A2 (n n → π*) state of formaldehyde and the 3B1 ground state of methylene. Numerical results are given which show that internally consistent self-consistent field orbitals (ICSCF ) are superior to canonical SCF orbitals as a starting point for a CI calculation. Our CI wave function for the 1A1 ground state gave an energy of ?114.13658 hartrees which is significantly lower than any previously reported energy calculation. This wave function gives a dipole moment of 2.22 Debye (C+O?) in good agreement with the experimental value of 2.33 ± 0.02 Debye.  相似文献   

7.
-1,4-Dialkyl-1,4-dihydro-1,4-diazine radical cations 1–3 have been established in recent years as unusually stable intermediates of corresponding two-step redox systems. The stability is evident from large comproportionation constants Kc > 1012 and from the isolability of persistent radical cation salts with counter anions such as Br-, I-, I3 -, PF6 -, BPh4-, or (TCNQ2)-. The structures of several crystalline derivatives have been determined, showing planar π systems and, in one instance, an anion-dependent tendency to form π/π dimers. Effects of dimerization are also evident from comparative magnetic susceptibility measurements of 1,4-diethyl-1,4-dihydroquinoxalinium iodide and tetraphenylborate. UV/Vis absorption spectra of the radical cations have been determined and interpreted with the help of molecular orbital calculations. The most simple member of the series, 1,4-diethyl-1,4-dihydropyrazinum radical cation 1, exhibits a long wavelength forbidden band (2B1u2Au) with a conspicuous vibrational fine structure. The results obtained for the small but very stable new radical cations 1 and 2 provide clues to the stability of flavosemiquinone oxidation states in pertinent oxidoreductase enzymes and show ways to new components for the design of materials with anisotropic physical properties.  相似文献   

8.
The equilibrium geometries, excitation energies, force constants, and vibrational frequencies of the low-lying electronic states X2B1, 2A1, 2B2, and 2A2 of the PF2 radical have been calculated at the MRSDCI level with a double zeta plus polarization basis set. Our calculated geometry, force constants, and vibrational frequencies for the X2B1 state are in good agreement with experimental data. The electronic transition moments, oscillator strengths for the 2A1X2B1 and 2A2X2B1 transitions, and radiative lifetimes for the 2A1 and 2A2 states are calculated based on the MRSDCI wave functions. © 1994 by John Wiley & Sons, Inc.  相似文献   

9.
Ab initio MRD –CI calculations using a basis set of near Hartree–Fock quality have been carried out to calculate the ground-state electronic structure of S2N+, S2N, and S2N? and the ionization potential, electron affinity, and vertical electronic spectrum of S2N. At the highest level of theory (estimated full CI or FCI ), S2N+ is predicted to have a linear structure with r(N? S) = 1.51 Å. For S2N and S2N?, the minimum in energy at the FCI level corresponds to a quasi-linear [with a barrier height to linearity of about 2.0 kcal mol?1, ] and a bent structure , respectively. The adiabatic/vertical ionization potential and electron affinity of S2N are predicted to be 7.26/7.82 and 1.60/0.79 eV, respectively. Of the several electronic transitions in S2N considered, the ones with the excitation energy of 1.87 eV (X2 A12B2) and 2.87 eV (X2A12B2) are somewhat intense (? = 0.005 and 0.002) and likely to be observed.  相似文献   

10.
Blue single crystals of Cu[μ2‐OOC(CH2)PO3H] · 2H2O ( 1 ) and Cu1.53‐OOC(CH2)PO3] · 5H2O ( 2 ) were prepared in aqueous solution. In compound 1 [space group C2/c (no. 15) with a = 1623.3(2), b = 624.0(1), c = 1495.5(2) pm, β = 122.45(1)°], Cu is coordinated by three oxygen atoms stemming from the hydrogenphosphonoacetate dianion and three water molecules to form a distorted octahedron. The Cu–O bonds range from 190.4(3) to 278.5(3) pm. The connection between the Cu2+ cations and the hydrogenphosphonoacetate dianions leads to a two‐dimensional structure with layers parallel to (101). The layers are linked by hydrogen bonds. In compound 2 [space group P1 (no. 2) with a = 608.2(1), b = 800.1(1), c = 1083.6(1) pm, α = 94.98(1)°, β = 105.71(1)°, γ = 109.84(1)°], two crystallographically independent Cu2+ cations are coordinated in a square pyramidal and an octahedral fashion, respectively. The Cu–O bonds range from 192.9(2) to 237.2(2) pm. The coordination of the phosphonoacetate trianion to Cu(1) results in infinite polyanionic chains parallel to [100] with a composition of {Cu(H2O)[OOC(CH2)PO3]}nn. Hydrated Cu(2) cations are accommodated between the chains as counterions. 1 and 2 show structural features of cation exchangers. Magnetic measurements reveal a paramagnetic Curie‐Weiss behavior. Compound 2 shows antiferromagnetic coupling between Cu2+ ions due to a super‐superexchange coupling. The UV/Vis spectra of 1 suggest three d–d transition bands at 763 nm (2B12E), 878 nm (2B12B2), and 1061 nm (2B12A1). Thermoanalytical investigations in air show that compound 1 is stable up to 165 °C, whereas decomposition of 2 begins at 63 °C.  相似文献   

11.
采用二阶微扰理论MP2、密度泛函B3LYP方法和含时密度泛函TD-B3LYP方法分别优化了TiO2分子的基态1A1和六个激发态1B23B21B13B11A23A2的几何结构. 1A11B23B21B13B1具有弯曲几何结构, 1A23A2具有线性对称结构. 我们发现激发态1B23B21B13B1键偶极矩的数值大小顺序和相应的键角大小顺序完全一致. 另外, 采用完全活化空间自洽场(CASSCF)CASSCF(6,6)、CASSCF(8,8)、多参考组态相互作用(MRCI)和含时密度泛函TD-B3LYP 计算了TiO2 分子各激发态的垂直激发能和绝热激发能. 对1B23B21B1三个态, MRCI/CASSCF(6,6) 计算的垂直激发能和绝热激发能与已有的实验值最接近. 对其他三个激发态3B11A23A2, 计算的激发能和文献报道的激发能计算值基本一致. 最后, 还计算了TiO2分子的基态和激发态的偶极矩. 对1A11B2态, 偶极矩的计算值与已有的实验值相吻合. 采用原子偶极矩校正的Hirshfeld 布居方法计算了TiO2分子在1A11B23B21B13B1态时各原子的电荷, 发现从基态到激发态偶极矩的变化与电荷从氧原子向钛原子的转移有关. 整个计算中还考察了基函数cc-pVDZ、cc-pVTZ和cc-pVQZ对计算结果的影响.  相似文献   

12.
Multireference perturbation theory with complete active space self-consistent field (CASSCF) reference functions is applied to the study of the valence π→π* excited states of 1,3-butadiene, 1,3,5-hexatriene, 1,3,5,7-octatetraene, and 1,3,5,7,9-decapentaene. Our focus was put on determining the nature of the two lowest-lying singlet excited states, 11Bu+ and 21Ag, and their ordering. The 11Bu+ state is a singly excited state with an ionic nature originating from the HOMO→LUMO one-electron transition while the covalent 21Ag state is the doubly excited state which comes mainly from the (HOMO)2→(LUMO)2 transition. The active-space and basis-set effects are taken into account to estimate the excitation energies of larger polyenes. For butadiene, the 11Bu+ state is calculated to be slightly lower by 0.1 eV than the doubly excited 21Ag state at the ground-state equilibrium geometry. For hexatriene, our calculations predict the two states to be virtually degenerate. Octatetraene is the first polyene for which we predict that the 21Ag state is the lowest excited singlet state at the ground-state geometry. The present theory also indicates that the 21Ag state lies clearly below the 11Bu+ state in decapentaene with the energy gap of 0.4 eV. The 0–0 transition and the emission energies are also calculated using the planar C2h relaxed excited-state geometries. The covalent 21Ag state is much more sensitive to the geometry variation than is the ionic 11Bu+ state, which places the 21Ag state significantly below the 11Bu+ state at the relaxed geometry. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 157–175, 1998  相似文献   

13.
Optical Absorption Spectroscopy on Ionic Ozonides Electronic transitions of ionic ozonides of alkali-metal and tetraorganylonium cations have been investigated in the range from 200 to 2000 nm. Optical absorption measurements of diffuse reflexion on powder and transmission on single crystals displayed a broad absorption at ∼480 nm and 490 nm, respectively. Optical spectra of the O3-radical in solution gave a well resolved vibronic finestructure with spacings of ∼790 cm–1, symmetrically to the maximum of the absorption band at 460 nm, and uneffected of the counter ion and solvent used. The finestructure allows a correlation to the νs-vibration of the ozonide ion in the excited state. The observed electronic transition is assigned to 2B12A2, based on MO-observations and ab initio calculations. Earlier reports of a strong absorption band at low energy for O3 cannot be reconfirmed.  相似文献   

14.
An electronic absorption band of Fe2+ in the distorted, six-coordinate M(2) site of the common mineral orthopyroxene, (Mg, Fe)SiO3, is identified at 2350 cm?1. This band is attributed to the A1 → B2 transition within the split 5T2g state of Fe2+ in C2V symmetry.  相似文献   

15.
Synthesis and Characterization of the Thio- and Seleno- closo -hexaborates and the Crystal Structure of (Ph4P)[B6H5Hfac(SH)] By treatment of [B6H5(SCN)]2– and [B6H5(SeCN)]2– in strong basic medium the chalcogeno-closo-hexaborates [B6H5S]3– and [B6H5Se]3– are formed. An X-ray structure determination has been performed on the doubly protonated compound (Ph4P)[B6H5Hfac(SH)] (triklin, P 1¯, a = 7.436(2), b = 12.850(2), c = 13.0594(12) Å, α = 93.131(8), β = 94.47(3), γ = 90.40(3)°, Z = 2). The 11B NMR spectra exhibit the characteristic pattern of a monosubtituted B6 octahedron with the intensity ratio 1 : 4 : 1. The chemical shifts are systematically dependent on the protonation at a facet of the B6 clusters with Hfac or at the chalcogen atom. Whereas the signals of the equatorial nuclei are nearly at equal positions from –16.0 to –16.9 ppm, the ipso-B atoms absorb in the low field region from –4.7 to –11.7 ppm, and the antipodal-B atoms in the high field from –21.6 to –28.0 ppm. In the IR and Raman spectra the typical B–X and B6-X stretching vibrations are observed from X = S at 1089 and 383, for X = Se at 1076 and 292 cm–1, respectively.  相似文献   

16.
The crystal structure of the title compound, C6H8N+·C8HN4O2, is characterized by three independent ion pairs (A, B and C) in the asymmetric unit. Each ion pair consists of an anion and a cation, and the three ion pairs have similar geometric parameters. All the anions are arranged as dianion dimers via two N—H⋯O hydrogen bonds and the dimers form one‐dimensional columns parallel to the b axis as a result of π–π interactions. The cations are also stacked, in two different ways: one type of stacking consists of alternating A and B cations, while the other type consists of C cations only. Each dianion dimer stack is surrounded by eight stacks of cations and is not connected directly to other dianion stacks.  相似文献   

17.
Anthracene single crystal foils have been investigated by electron energy loss in the range from 3 eV to 25 eV for various directions of the crystal excitation wave vector k. Experimental evidence for axial dispersion is obtained. Calculations in which a dielectric tensor is used in the oriented gas model explain the anisotropy in the energy loss data and allow the assignment of the losses in this whole energy range to 1Au and 1Bu crystal excitations originating from molecular 1A1g1B1u and → 1B1u excitations.  相似文献   

18.
A series of linear and hyperbranched polyester epoxies, with varied structural parameters such as kinked structure and different dendritic architectures, were synthesized by A2 + B2, A2 + B3, A3 + B2, and A3 + B3 approaches. The structures of synthesized monomers and polymers were confirmed by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopic techniques. The effect of varied structural parameters on phase behavior and photoresponsive properties was investigated by using differential scanning calorimeter, thermal optical polarized microscope, UV–visible spectroscopy, photoviscosity, and refractive index studies. The transition temperatures of hyperbranched polymers were higher than that of the corresponding linear analogues. All the polymers showed nematic phase (nematic droplets) over a broad temperature range. The effect of kinked structural unit on photoresponsive property is less in both linear and hyperbranched architectures. Although the effect of architectural nature is highly considerable within the hyperbranched architectures, the polymer (HPE–33) synthesized by A3 + B3 approach showed highest rate of photocrosslinking, followed by HPE–I 32; HPE–T 32, and HPE–23, which were synthesized by A3 + B2 and A2 + B3 approaches, respectively. The findings in photoresponsive properties were further supported by molecular modeling studies. Substantial variation of refractive index (0.015–0.024) indicates that these polymers could be used for optical recording. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Multiconfiguration wave functions constructed from contracted Gaussian-lobe functions have been found for the ground and valence-excited states of urea. ICSCF molecular orbitals of the excited states were used as the parent configurations for the CI calculations except for the 1A1(π → π*) state. The 1A1(π → π*) state used as its parent configuration an orthogonal linear combination of natural orbitals obtained from the second root of a three-configuration SCF calculation. The lowest excited states are predicted to be the n π → π* and π → π* triplet states. The lowest singlet state is predicted to be the n π → π* state with an energy in good agreement with the one known UV band at 7.2 eV. The π → π* singlet state is predicted to be about 1.9 eV higher, contrary to several previous assignments which assumed the lowest band was a π → π* amide resonance band. The predicted ionization energy of 9.0 eV makes this and higher states autoionizing.  相似文献   

20.
The Arrhenius parameters have been determined for the SO2(3B1) quenching reaction (9), SO2(3B1) + M → (SO2 ? M), for 21 different molecules as quenching partner M. The rate constants were calculated from phosphorescence lifetime measurements made over a range of reactant pressures and temperatures. Excitation of the SO2 (3B1) molecules was accomplished by two very different methods: (1) a 3829 Å laser pulse generated the triplet directly through absorption within the “forbidden” SO2 (3B1) → SO2 (1A1) band; (2) a broadband Xe-flash system generated SO2(3B1) molecules and triplets were formed subsequently by intersystem crossing, SO2(1B1) + M → SO2(3B1) + M. The measured rate constants were independent of the method of triplet formation employed. For the atmospheric gases, the activation energies (kcal/mole) were identical within the experimental error: N2, 2.9 ± 0.4; 02, 3.2 ± 0.5; Ar, 2.8 ± 0.6; CO2, 2.8 ± 0.4; CO, 2.7 ± 0.4; CH4, 2.5 ± 0.6. This energy corresponds to the first region of the SO2(3B1) → SO2(1A1) absorption spectra in which Brand and coworkers observe strong perturbations. It is suggested that the quenching in these cases results largely from the physical process involving potential energy surface crossing to another electronic state. Activation energies for SO2(3B1) quenching by the paraffinic hydrocarbons show a regular decrease in the series ethane, neopentane, propane, n-butane, cyclohexane, and isobutane, which parallels closely the decrease in C? H bond energies in these compounds. These and other data are most consistent with the dominance of chemical quenching in these cases. The rate constants for the olefinic and aromatic hydrocarbons and nitric oxide show only very small variations with temperature change, and they are near the kinetic collision number. These data support the hypothesis that quenching in these cases is associated with the formation of a charge-transfer complex and subsequent chemical interactions between the SO2(3B1) molecule and the π-system of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号