首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1S0 two-nucleon transition matrix T is constructed from the symmetric part σ of its half-shell elements. The on-shell component of σ is given by the phase shift, while a wide class of parametrizations is suggested for the off-shell part. Restrictions on the off-shell part of σ arising from the short range and the proper one-pion-exchange tail of the nucleon-nucleon interaction are investigated. Using σ in the 1S0 and the Reid soft-core potential in the other partial waves, the binding energy per particle in nuclear matter and 16O and the 18O shell-model spectrum are computed. The sensitivity of these nuclear-structure results is tested with respect to (i) smooth off-shell changes in σ, (ii) various assumptions on the high-energy phase shift, (iii) the charge dependence of the phase shift, and (iv) experimental uncertainties in the phase shift.  相似文献   

2.
Using as two-nucleon interaction input the 3S1-3D1 and 1S0 partial waves, the Faddeev equations are solved for the three-nucleon bound state. The 3S13D1T-matrix is calculated from the Reid potential. Avoiding the usual potential fit, the 1S0T-matrix is directly continued off-shell and is constructed consistent with the 1S0 phase shift of elastic two-nucleon scattering. The off-shell part of the 1S0T-matrix is parametrized and with this parametrization the dependence of the three-nucleon bound-state properties is studied. As a result it is found that the binding energy varies only between 6.2 MeV and 6.8 MeV, while the minimum in the charge form factor for electron scattering from 3He lies between 12.9 fm?2 and 18.7 fm?2. The larger (smaller) 3He binding energy is accompanied by a 3He charge form factor whose minimum is at larger (smaller) momentum transfers.  相似文献   

3.
Pure rotational spectra of S235Cl2 and S235Cl37Cl have been observed using a Fourier-transform microwave spectrometer. An analysis of the hyperfine structure made by considering the nuclear spin statistics showed that S2Cl2 has C2symmetry, where the hyperfine splittings due to the two Cl nuclei were analyzed precisely. The nuclear quadrupole coupling constants including the off-diagonal (χabχacχbc) components and the nuclear spin–rotation interaction constants associated with the two Cl nuclei have been determined for the first time. We have shown that the nuclear quadrupole interaction plays an important role in the orthopara mixing.  相似文献   

4.
We discuss exclusive elastic double diffractive axial-vector χc(1+) meson production in proton–antiproton collisions at the Tevatron. The amplitude for the process is derived within the kt-factorization approach with unintegrated gluon distribution functions (UGDFs). We show that the famous Landau–Yang theorem is not applicable in the case of off-shell gluons. Differential cross sections for different UGDFs are calculated. We compare exclusive production of χc(1+) and χc(0+). The contribution of χc(1+) to the J/Ψ+γ channel is smaller than that of the χc(0+) decay, but not negligible and can be measured. The numerical value of the ratio of the both contributions is much less dependent on the UGDFs modeling than the cross sections themselves.  相似文献   

5.
The solid neon matrix isolated spectrum of CO2 are recorded in the 2–5 μm region. Natural and 13C or 18O enriched CO2 samples were used and the 1 + ν3 (n = 0, 1, 2) series bands of different CO2 isotopologues have been observed. The solid neon matrix shift due to Fermi-resonance of bands within the same vibrational polyad is analyzed.  相似文献   

6.
Landau levels have been theoretically investigated in a two-dimensional electron gas near a quantum dot (QD) layer. By a diagrammatical method, we have formulated the self-energy for the Landau level and deduced its relation to the AC conductivity σloc(ω) in the QD layer. As an example, we have examined the density of states in the case where σloc(ω) is described by AωS(S=0.8). It is found that the Landau levels are broadened due to the interaction with the localized electrons in the QDs.  相似文献   

7.
We have studied the microscopic properties of the tetragonal UCu5Al Kondo compound by 27Al and 63,65Cu NMR in the paramagnetic state. NMR and susceptibility measurements performed on the powdered sample, but oriented along the applied field, showed χ>χ. Plots of K(T) against χ(T) at temperatures T≥100 K yield the transferred hyperfine fields of +5.9 kOe/μB for 27Al nuclei, and +5.3 and −7.0 kOe/μB for 65Cu nuclei in crystallographically inequivalent Cu(2) and Cu(1) sites, respectively. The Knight shift vs. susceptibility plots for T<100 K exhibit a deviation from the linear behaviour (absolute values of shifts become smaller than expected). We attribute this finding to the crystalline electric field effect in similar way as it was reported for several Ce-based compounds. The random distribution of the Al and Cu(2) atoms in the crystal lattice we consider as a reason of an unusual broadening of the NMR spectra, particularly at low temperatures.  相似文献   

8.
The orange system of FeO has been reinvestigated using low-temperature molecular beam laser-induced fluorescence spectra, obtained by supersonic jet cooling. Two new weak bands have been found, and analyses of some of the previously known bands extended. Measurements of the 54Fe-56Fe isotope shifts have been made for most of the bands, and the hyperfine structure of the low-J lines has been recorded for two of the strongest bands of 57FeO. The isotope shifts are consistent with the presence of two 5Δi-5Δi transitions lying within 1000 cm−1; the origins of the Ω = 4 spin components lie at 5583 and 6110 Å, respectively. The hyperfine patterns and the spin-orbit structure indicate that the upper state electron configurations are (3dδ)3 (3dπ)2 (3dσ)1, (D5Δi, 5583 Å) and O(2pπ)3 (4sσ)1 (3dδ)3(3dπ)3, (D5Δi, 6110 Å). The bond length in the D′ state (r0 = 1.654 Å) has been obtained from a deperturbation of the 6110 Å band; it is only 0.035 Å longer than in the ground state, which indicates that electron promotion between the two π orbitals, nominally O(2pπ) and Fe(3dπ), has only a small effect on the strength of the bonding. The new isotope data still do not clarify the vibrational assignments of the higher levels, which are disorganized by extensive electronic perturbations.  相似文献   

9.
Mechanisms of ‘environmental decoherence’ such as surface scattering, Elliot–Yafet process and precession mechanisms, as well as their influence on the spin phase relaxation are considered and compared. It is shown that the ‘spin ballistic’ regime is possible, when the phase relaxation length for the spin part of the wave function (L(s)) is much greater than the phase relaxation length for the ‘orbital part’ (L(e)). In the presence of an additional magnetic field, the spin part of the electron's wave function (WF) acquires a phase shift due to additional spin precession about that field. If the structure length L is chosen to be L(s)>L>L(e), it is possible to ‘wash out’ the quantum interference related to the phase coherence of the ‘orbital part’ of the WF, retaining at the same time that related to the phase coherence of the spin part and, hence, to reveal corresponding conductance oscillations.  相似文献   

10.
We observed green optical emission from an atmospheric-pressure N2/O2 plasma jet. The green optical emission was composed of a line emission at λ = 557.71 ± 0.03 nm and a broadband component at 530 ≤ λ ≤ 560 nm . The line emission was assigned to the 1D1S forbidden transition of atomic oxygen, whereas the broadband emission was due to the formation of O(1S)N2 excimer. We measured the absolute densities of O(1S) and O(1S)N2 using a spectrograph with the absolute sensitivity calibration, and we discussed the kinetics in the green plasma jet on the basis of the absolute O(1S) and O(1S)N2 densities. According to the rate coefficients and the transition probabilities reported in literature, the present experimental results are explained if the densities of and O(3P) are 9 × 1013 and 3 × 1013cm−3 , respectively.  相似文献   

11.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

12.
Data on at rest show two resonant processes: (a) f0(1370)η,f0(1370)→σσ and ρρ, (b) η(1440)σ, η(1440)→ηπ+π. The branching ratio BR[f0(1370)→ρρ]/BR[f0(1370)→σσ]=0.98±0.25 in the mass range available here. Using data on , the ratio Γ5 for f0(1370). The effects of the strongly s-dependent width of f0(1370) are discussed in some detail.The η(1440) is observed decaying to ησ and a0(980)π, with strong destructive interference between them. In its decay to a0(980)π, a narrow peak appears in the ηπ mass spectrum, but 30–50 MeV above that usually attributed to a0(980) and significantly above the KK threshold. This effect is explained naturally by a two-step process: η(1440)→K*(890)K followed by rescattering of the two kaons through a0(980) to ηπ above the KK threshold.  相似文献   

13.
The fluorescence and phosphorescence spectra of the aromatic amines acridan, iminobibenzyl, and carbazole have been measured in Shpolskii matrices at 10 K. Under these conditions the emission exhibits a detailed vibrational structure which has been analyzed. The change of the polarization degree observed within the fluorescence spectra at 77 K, particularly pronounced in acridan and iminobibenzyl, is attributed to vibronic interaction between the closely lying S1(1A1) and S2(1B1) excited states. This process activates a b1 vibration with a frequency of 1200 cm−1 in the ground state. The appearance of a long-axis (b1) polarized vibration (700 cm−1) following the out-of-plane polarized 0-0 band of the phosphorescence of these amines at 77 K is suggested to arise from vibronic interactions in the triplet manifold. This second-order spin-orbit coupling (soc) process is superimposed upon the dominant first-order electronic soc mechanism, which couples the lowest π, π* triplet with high-energy (σ, π)* singlet states.  相似文献   

14.
In this paper we will focus on the nucleon-nucleon interaction in relative S-states. The 1S0 interaction is known to be close to that for critical two-body binding. We will discuss two approaches to the NN interaction, which are equivalent on-shell but not off-shell. There is a well-defined transformation between these approaches [1]. One (my preferred approach) is to minimize the tensor forces far off-shell, which leads to more rapid convergence, but at the price of significant non-locality. This approach is used in a model of relativistic tensor quenching of OPEP [2]. With non-local NN interactions it is possible to fit not only NN observables, but also the NNN ground-state energies [3]. The other approach is to maximize the role of the and keep the interaction as local as possible [4]. This approach is also internally consistent, but requires additional NNN interactions to fit nuclear data. Also, we discuss briefly a so-called low momentum interaction [5, 6], which fits S-wave phase shifts quite well. This interaction is strongly non-local, and it can be approximated by a schematic separable interaction. Finally, we mention the Nambu–Jona-Lasinio model [7] and a good approximation, the Hulthen potential, which provides some insight into the near critical two-body binding.  相似文献   

15.
Crystal Barrel data on at rest are presented. Mass spectra for 2π0 combinations, 3π0 and 4π0 and decay angular distributions all differ significantly from phase space. We present several ways of fitting the data. All agree on the definite presence of the f0(1500), observed in its 4π0 decay mode. It can decay into ππ(1300) and into σσ where σ stands for the full ππ S-wave amplitude.  相似文献   

16.
We have studied crystal structure and transport properties of the quasi one-dimensional cobalt oxide CaCo2O4. The CaCo2O4 phase crystallizes in calcium-ferrite type structure, which consists of a corner- and edge-shared CoO6 octahedron network including one-dimensional double chains. Large thermoelectric power (S  150 μV/K at 390 K) with metallic temperature dependence of S, moderate resistivity (ρ  2.9 × 10−1 Ω cm at 390 K) with carrier localization at low temperature, and normal thermal conductivity (κ  6.3 W/Km at 390 K) were observed. The phonon mean-free path was calculated from the observed data, as a function of temperature. The long phonon mean-free path (l  24 Å at 300 K) implies that the thermal conductivity could be suppressed by impurity scattering of phonons with partial element substitution.  相似文献   

17.
In a data sample of four million hadronic Z decays collected with the ALEPH detector at LEP, four Λb baryon candidates are exclusively reconstructed in the Λb → Λc+π channel, with the Λc+ decaying into pKπ+, , or Λπ+π+π. The probability of the observed signal to be due to a background fluctuation is estimated to be 4.2 × 10−4. The mass of the Λb is measured to be 5614±21 (stat.) ± 4 (syst.) MeV/c2.  相似文献   

18.
The reactivity of the (0 0 0 1)-Cr–Cr2O3 surface towards water was studied by means of periodic DFT + U. Several water coverages were studied, from 1.2H2O/nm2 to 14.1H2O/nm2, corresponding to ¼, 1, 2 and 3 water/Cr at the (0 0 0 1)-Cr2O3 surface, respectively. With increasing coverage, water gradually completes the coordination sphere of the surface Cr atoms from 3 (dry surface) to 4 (1.2 and 4.7H2O/nm2), 5 (9.4H2O/nm2) and 6 (14.1H2O/nm2). For all studied coverages, water replaces an O atom from the missing above plane. At coverages 1.2 and 4.7H2O/nm2, the Cr–Os (surface oxygen) acid–base character and bond directionality govern the water adsorption. The adsorption is molecular at the lowest coverage. At 4.7H2O/nm2, molecular and dissociative states are isoenergetic. The activation energy barrier between the two states being as low as 12 kJ/mol, allowing protons exchanges between the OH groups, as evidenced by ab inito molecular dynamics at room temperature. At coverages of 9.4 and 14.1H2O/nm2, 1D- (respectively, 2D-) water networks are formed. The resulting surface terminations are –Cr(OH)2 and –Cr(OH)3– like, respectively. The increased stability of those terminations as compared to the previous ones are due to the stabilization of the adsorbed phase through a H-bond network and to the increase in the Cr coordination number, stabilizing the Cr (t2g) orbitals in the valence band. An atomistic thermodynamic approach allows us to specify the temperature and water pressure domains of prevalence for each surface termination. It is found that the –Cr(OH)3-like, –Cr(OH)2 and anhydrous surfaces may be stabilized depending on (TP) conditions. Calculated energies of adsorption and OH frequencies are in good agreement with published experimental data and support the full hydroxylation model, where the Cr achieves a 6-fold coordination, at saturation.  相似文献   

19.
Yuhai Hu  Keith Griffiths   《Surface science》2009,603(17):2835-2840
NO dissociation and subsequent N2 production in the presence of co-adsorbed S18O2 and D2 on the surface of stepped Pt(3 3 2) were studied using Fourier transform infra red reflection–absorption spectroscopy (FTIR-RAS) combined with thermal desorption spectroscopy (TDS). Reduction of NO by D (D2 is adsorbed dissociatively on Pt surfaces) proceeds to a limited extent, because this reaction is rate-controlled by NO dissociation and the supply of D atoms at the higher surface temperatures at which NO dissociation becomes significant (350 K and higher). NO–D reaction is suppressed in the presence of S18O2, depending significantly on the S18O2 coverage and the competition between the reactions NO–D and S18O2–D. When the supply of D2 is limited, e.g., 0.1 L in this study, the presence of S18O2 suppresses the NO–D reaction. With a sufficient supply of D2, e.g., 0.4 L and higher, D-atom competing reactions do not play a role any more because the reactions of both NO and S18O2 with D proceed only to a very limited extent. As such, generation of O atoms from S18O2 dissociation is the main reaction that leads to the suppression in NO dissociation and consequently, N2 production.It is also concluded that the presence of S18O2 does not seriously poison the active sites on the Pt surface, providing that there is a sufficient D supply to remove O atoms from both NO dissociation and S18O2 dissociation.  相似文献   

20.
The collision broadening and shift of the Hg intercombination spectral line 253.7 nm (61S0–63P1) perturbed by Kr has been investigated using a high-resolution scanning Fabry–Perot interferometer. The values of the pressure broadening and shift coefficients β and δ, respectively, for the studied line have been obtained. The obtained coefficients β and δ are compared with their corresponding published experimental values and also those calculated using Lindholm–Foley impact theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号