首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

2.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

3.
Treatment of [Cp*Rh(H(2)O)(3)](OTf)(2) (1) with Me(3)SiNH-t-Bu in acetone gave a hydroxyl-capped half-cubane [Cp*(3)Rh(3)(mu-OH)(3)(mu(3)-OH)](OTf)(3)(t-BuNH(3)) (2). Slow diffusion of Me(3)SiN(3) in diethyl ether into compound in acetone produced an azido-capped half-cubane [Cp*(3)Rh(3)(mu-N(3))(3)(mu(3)-N(3))](OTf)(2) (3). On the other hand, treating 1 with Me(3)SiN(3) in acetone gave an azido-bridged, dinuclear rhodium(III) complex [Cp*Rh(mu-N(3))(OH(2))](2)(OTf)(2) (4). Complexes 2 and 3 represent the first azido- or hydroxyl-capped, incomplete cubane-type Rh clusters. Under appropriate conditions, complexes 2 and 3 could be converted to complex 4. The structures of all products were determined by X-ray diffraction.  相似文献   

4.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   

5.
The photoionization spectroscopy of Si(CH3)3Cl in the range of 50 -130 nm was studied with synchrotron radiation source. The adiabatic ionization potentials of molecule Si(CH3)3Cl and radical Si(CH3)3 are 10.06 ±0.02 eV and 7.00±0.03 eV respectively. In addition, the appearance potentials of Si(CH3)2Cl+, Si(CH3)3+, SiCl+ and SiCH3+ were determined:
AP(Si(CH3)2Cl+) =10.49±0.02eV, AP(Si(CH3)3+) = 11.91 ±0.02eV
AP(SiCl+) = 18.64 ±0.06eV, AP(SiCH3+)= 18.62 ±0.02eV
From these, some chemical bond energies of Si(CH3)3Cl+ were calculated:
D(Si(CH3)2Cl+ - CH3) =0.43 ±0.02eV, D(Si(CH3)3+ - Cl) = 1.85 ± 0.02eV
D(SiCH3+ - (2CH3 + Cl)) = 8.56 ± 0.06eV, D(SiCH3+ - 2CH3) =6.71±0.06eV
D(SiCl+ - 3CH3) = 8.58 ± 0.06eV, D(SiCl+- 2CH3) = 8.15 ±0.06eV
D(SiCH3+- (CH3 + Cl)) =8.13 ±0.06eV  相似文献   

6.
Reactions of tris(trifluoromethyl)borane carbonyl, (CF(3))(3)BCO, with ammonia yielded either a mixture of [NH(4)][(CF(3))(3)BC(O)NH(2)], [NH(4)][(CF(3))(3)BCN], and [NH(4)](2)[{(CF(3))(3)BC(O)}(2)NH] or neat [NH(4)](2)[{(CF(3))(3)BC(O)}(2)NH] depending on the reaction conditions. The salt K[(CF(3))(3)BC(O)NH(2)] was obtained as the sole product from the reaction of NH(3) with K[(CF(3))(3)BC(O)F]. A simple synthesis for cyanotris(trifluoromethyl)borates, M[(CF(3))(3)BCN], was developed by dehydration of M[(CF(3))(3)BC(O)NH(2)] (M = [NH(4)], K) using phosgene. In addition, syntheses of the tris(trifluoromethyl)boron species [(CF(3))(3)BC(O)NH(n)()Pr](-), [(CF(3))(3)BC(O)NMe(2)](-), and (CF(3))(3)BC(O)NMe(3), as well as of (CF(3))(3)BC(O)PMe(3), were performed. All species were characterized by multinuclear NMR spectroscopy. As far as neat substances resulted, IR and Raman spectra were recorded and their thermal behaviors were studied by differential scanning calorimetry. The interpretation of reaction pathways, structures, and vibrational spectra are supported by DFT calculations. The solid-state structure of K(2)[{(CF(3))(3)BC(O)}(2)NH].2MeCN was determined by single-crystal X-ray diffraction.  相似文献   

7.
Two new tris-melamine derivatives, triazine-thio-M(3) (5) (C(3)N(3)-2,4,6-[SCH(2)C(6)H(4)-3-N(CH(2)C(6)H(4)-4-C(CH(3))(3))COC(6)N(3)-2-NHC(3)N(3)(NH(2))(NHCH(2)CH(2)C(CH(3))(3))-5-Br](3)) and benzene-thio-M(3) (6) (C(6)H(3)-1,3,5-[SCH(2)C(6)H(4)-3-N(CH(2)C(6)H(4)-4-C(CH(3))(3))COC(6)H(3)-2-NHC(3)N(3)(NH(2))(NHCH(2)CH(2)C(CH(3))(3))-5-Br](3)), were synthesized by reactions of 2,4,6-trithiocyanuric acid and 1,3,5-trimercaptobenzene with a bromobenzyl melamine derivative 19 (BrCH(2)C(6)H(4)-3-N(CH(2)C(6)H(4)-4-C(CH(3))(3))COC(6)H(3)-2-NHC(3)N(3)(NH(2))(NHCH(2)CH(2)C(CH(3))(3))-5-Br). These two compounds formed stable and structurally well-defined 1 + 3 supramolecular aggregates with neohexyl isocyanurate (R'CA) (9) as shown by NMR spectroscopy and gel permeation chromatography. (1)H NMR competition experiments indicated that the stability of triazine-thio-M(3).(R'CA)(3) (1) was similar to that of benzene-thio-M(3).(R'CA)(3) (2). The order of stabilities of tris-melamine-based 1 + 3 complexes was hubM(3).(R'CA)(3) (3) > triazine-thio-M(3).(R'CA)(3) (1) approximately benzene-thio-M(3).(R'CA)(3) (2) > flexM(3).(R'CA)(3) (4). Computational simulations were also carried out on triazine-thio-M(3).(R'CA)(3) and hubM(3).(R'CA)(3) fully solvated in CHCl(3). Values of DP (the deviation from planarity of the cyanuric acid and melamine rosette) obtained from these simulations correlated correctly with the observed stabilities and suggested a structural reason why triazine-thio-M(3).(R'CA)(3) was less stable than hubM(3).(R'CA)(3).  相似文献   

8.
A seven-electron cluster [Mo3(mu3-S){mu3-SC(CO(2)CH(3))=C(CO(2)CH(3))S}{mu-SC(CO(2)CH(3))=CH(CO(2)CH(3))}(dtp)3(mu-OAc)] [2, S2P(OC(2)H(5))2-; dtp = diethyldithiophosphate] and an organometallic cluster [Mo3(mu3-S){mu3-SC(CO(2)CH(3))=C(CO(2)CH(3))S}{mu-SC(CO(2)CH(3))CH(OCH(3))(CO2)}(dtp)2(CH(3)OH)(mu-OAc)](Mo-C) (3) were obtained by reaction in methanol of the sulfur-bridged trinuclear complex [Mo3(mu3-S)(mu-S)3(dtp)3(CH(3)CN)(mu-OAc)] (1) with dimethylacetylenedicarboxylate (DMAD). The X-ray structures of 2 and 3 revealed the adduct formation of two DMAD molecules to the respective Mo(3)S(4) cores. 2 is paramagnetic and obeys the Curie-Weiss law: the mu(eff) value at 300 K is 1.90 muB. The electron spin resonance signal was observed at 173 K. The density functional theory calculation of 2 demonstrated that the main components of the singly occupied molecular orbitals of alpha and beta spins are Mo d electrons and the main components of lowest unoccupied molecular orbitals are of Mo and the olefin moiety with one C-S bond. A one-electron reversible oxidation process of 2 was observed at E1/2 = -0.11 V vs Fc/Fc+. The electronic spectrum of 2 has a peak at 468 nm (epsilon = 2170 M(-1) cm(-1)) and shoulders at 640 (918) and 797 (605) nm, and 3 has shoulders at 441 (1740) and 578 (625) nm and a distinct peak at 840 (467) nm. An intermediate [Mo3(mu3-S){mu3-SC(CO(2)CH(3))=C(CO(2)CH(3))S}{mu-SC(CO(2)CH(3))=CH(CO(2)CH(3))}(dtp)3(mu-OAc)]+ (4) is tentatively suggested: a one-electron reduction of 4 gives 2, and a nucleophilic conjugate addition of CH(3)O- to the alpha,beta-unsaturated carbonyl group of 4 gives 3.  相似文献   

9.
二甲基甲酰胺中四种钕盐的电导   总被引:3,自引:0,他引:3  
通过电导测量研究了四种钕盐:Nd(CF3SO3)3、Nd(ClO4)3、Nd(NO3)3和NdCl3在极性非质子溶剂DMF中的电导性质.利用线性拟合方法求得在25 ℃下Nd(CF3SO3)3和Nd(ClO4)3的极限摩尔电导率分别为278.8和 280.7 S•cm2•mol-1.用间接方法求得Nd(NO3)3 与NdCl3 的极限摩尔电导率分别为297.2和287.3 S•cm2 •mol-1.在25~65 ℃温度范围内,Nd(CF3SO3)3和Nd(ClO4)3的电导率随温度呈线性变化. Nd(NO3)3和NdCl3的电导行为表现出明显的离子缔合.  相似文献   

10.
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).  相似文献   

11.
将不同荧光性能的铽(Tb)、镨(Pr)离子分别与铕(Eu)离子混合,以三异丙氧基稀土的形式掺杂P(MMA-CO-St)共聚物,研究Eu^3 /Tb^3 和Eu^3 /pr^3 共掺杂P(MMA-CO-St)的荧光性能的变化情况.结果表明,Eu^3 /Tb^3 掺杂的P(MMA-CO-St)中,Tb^3 作为能量给予体,Eu^3 作为能量接受体,能量转移的结果使Eu^3 特征荧光显增强;Eu^3 /pr^3 掺杂的P(MMA-CO-St)中,Eu^3 的能量向pr^3 转移,致使Eu^3 的特征荧光猝灭,pr^3 的荧光略为增强.  相似文献   

12.
Treatment of the metalloligand [{Ti(eta(5)-C(5)Me(5))(micro-NH)}(3)(micro(3)-N)] with silver(i) trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)][O(3)SCF(3)] and [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}][O(3)SCF(3)] or the triangular silver cluster [(CF(3)SO(2)O)(3)Ag(3){(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)] in which each face is capped by a metalloligand.  相似文献   

13.
The synthesis, crystal structure, and magnetic properties of three new manganese(III) clusters are reported, [Mn 3(mu 3-O)(phpzH) 3(MeOH) 3(OAc)] (1), [Mn 3(mu 3-O)(phpzMe) 3(MeOH) 3(OAc)].1.5MeOH (2), and [Mn 3(mu 3-O)(phpzH) 3(MeOH) 4(N 3)].MeOH (3) (H 2phpzH = 3(5)-(2-hydroxyphenyl)-pyrazole and H 2phpzMe = 3(5)-(2-hydroxyphenyl)-5(3)-methylpyrazole). Complexes 1- 3 consist of a triangle of manganese(III) ions with an oxido-center bridge and three ligands, phpzR (2-) (R = H, Me) that form a plane with the metal ions. All the complexes contain the same core with the general formula [Mn 3(mu 3-O)(phpzR) 3] (+). Methanol molecules and additional bridging ligands, that is, acetate (complexes 1 and 2) and azide (complex 3), are at the terminal positions. Temperature dependent magnetic susceptibility studies indicate the presence of predominant antiferromagnetic intramolecular interactions between manganese(III) ions in 1 and 3, while both antiferromagnetic and ferromagnetic intramolecular interactions are operative in 2.  相似文献   

14.
The alpha-C-H bonds of 3-methyl-2-butanone, 3-pentanone, and 2-methyl-3-pentanone were activated on the sulfur center of the disulfide-bridged ruthenium dinuclear complex [(RuCl(P(OCH3)3)2)2(mu-S2)(mu-Cl)2] (1) in the presence of AgX (X = PF6, SbF6) with concomitant formation of C-S bonds to give the corresponding ketonated complexes [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHR1COR2)(Ru(CH3CN)3(P(OCH3)3)2)]X3 ([5](PF6)3, R1 = H, R2 = CH(CH3)2, X = PF6; [6](PF6)3, R1 = CH3, R2 = CH2CH3, X = PF6; [7](SbF6)3, R1 = CH3, R2 = CH(CH3)2, X = SbF6). For unsymmetric ketones, the primary or the secondary carbon of the alpha-C-H bond, rather than the tertiary carbon, is preferentially bound to one of the two bridging sulfur atoms. The alpha-C-H bond of the cyclic ketone cyclohexanone was cleaved to give the complex [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SS-1- cyclohexanon-2-yl)(Ru(CH3CN)3(P(OCH3)3)2)](SbF6)3 ([8](SbF6)3). And the reactions of acetophenone and p-methoxyacetophenone, respectively, with the chloride-free complex [(Ru(CH3CN)3(P(OCH3)3)2)2(mu-S2)]4+ (3) gave [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCH2COAr)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([9](CF3SO3)3, Ar = Ph; [10](CF3SO3)3, Ar = p-CH3OC6H4). The relative reactivities of a primary and a secondary C-H bond were clearly observed in the reaction of butanone with complex 3, which gave a mixture of two complexes, i.e., [(Ru(CH3CN)2(P(OCH3)3)20(mu-SSCH2COCH2CH3)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([11](CF3SO3)3) and [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHCH3COCH3)(Ru(CH3CN)3(P(OCH3)2)](CF3SO3)3 ([12](CF3SO3)3), in a molar ratio of 1:1.8. Complex 12 was converted to 11 at room temperature if the reaction time was prolonged. The relative reactivities of the alpha-C-H bonds of the ketones were deduced to be in the order 2 degrees > 1 degree > 3 degrees, on the basis of the consideration of contributions from both electronic and steric effects. Additionally, the C-S bonds in the ketonated complexes were found to be cleaved easily by protonation at room temperature. The mechanism for the formation of the ketonated disulfide-bridged ruthenium dinuclear complexes is as follows: initial coordination of the oxygen atom of the carbonyl group to the ruthenium center, followed by addition of an alpha-C-H bond to the disulfide bridging ligand, having S=S double-bond character, to form a C-S-S-H moiety, and finally completion of the reaction by deprotonation of the S-H bond.  相似文献   

15.
Compared to [Ni(II)(SePh)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (1a) and [Ni(II)(Cl)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (3a) with a combination of the intramolecular [Ni...H-S] and [Ni-S...H-S] interactions, complexes [NiII(SePh)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (1b) and [Ni(II)(Cl)(P (o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (3b) with intramolecular [Ni...H-S] interaction exhibit lower nu(S-H) stretching frequencies (2137 and 2235 cm(-1) for 1b and 3b vs 2250 and 2287 cm(-1) for 1a and 3a, respectively) and smaller torsion angles (27.2 degrees for 3b vs 58.9 and 59.1 degrees for 1a and 3a, respectively). The pendant thiol interaction modes of 1a, 3a, and 3b in the solid state are controlled by the solvent pairs of crystallization. Oxygen oxidation of dinuclear [Ni(II)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))](2) (4) yielded thermally stable dinuclear [Ni(III)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-mu-S))](2) (5). The two paramagnetic d(7) Ni(III) cores (S = 1/2) with antiferromagnetic coupling (J = -3.13 cm(-1)) rationalize the diamagnetic property of 5. The fully delocalized mixed-valence [Ni(II)-Ni(III)] complexes [Ni2(P(o-C(6)H(3)-3-SiMe(3)-2-S)(3))(2)]- (6) and [Ni(2)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(3))(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SCH(3)))] (7) were isolated upon the reduction of 5 and the methylation of 6, respectively. The electronic perturbation from the sulfur methylation of 6 triggers the stronger Ni...Ni interaction and the geometrical rearrangement from the diamond shape of the [NiS(2)Ni] core to the butterfly structure of [Ni(mu-S)(2)Ni] to yield 7 with Ni...Ni distances of 2.6088(1) A. The distinctly different Ni...Ni distances (2.6026(7) for 5 and 2.8289(15) A for 6) and the coordination number of the nickels indicate a balance of geometrical requirements for different oxidation levels of [PS(3)Ni-NiPS(3)] cores of 5 and 6.  相似文献   

16.
The structure and aromaticity of a royal crown-shaped molecule Li(3)-N(3)-Be are studied at the CCSD(T)/aug-cc-pVDZ level. This molecule is a charge-separated system and can be denoted as Li(3) (2+)N(3) (3-)Be(+). It is found that the Li(3) (2+) ring exhibits aromaticity mainly because the Li(3) (2+) ring can share the pi-electron with the N(3) (-3) ring. The 4n+2 electron counter rule can be satisfied for the Li(3) (2+) subunit if the shared pi valence electron of N(3) (3-) subunit is also taken into account. This new knowledge on aromaticity of a ring from the interactions between subunits is revealed first time in this paper. Li(3)-N(3)-Be can be also regarded as a molecule containing two superatoms (Li(3) and N(3)), which may be named as a "superomolecule." Li(3)-N(3)-Be is a new metal-nonmetal-metal type sandwich complex. The N(3) (3-) trianion in the middle repulses the electron clouds of the two metal subunits (mainly to the Li(3) superatom) to generate an excess electron, and thus Li(3)-N(3)-Be is also an electride. This phenomenon of the repulsion results in: (a) the HOMO energy level increased, (b) the electron cloud in HOMO distended, (c) the area of the negative NICS value extended, and (d) the VIE value lowered. So the superomolecule Li(3)-N(3)-Be is not only a new metal-nonmetal-metal type sandwich complex but also a new type electride, which comes from the interaction between the alkali superatom (Li(3)) and the nonmetal superatom (N(3)).  相似文献   

17.
The syntheses of the ionic compounds [Li(+).2 dioxane (2,6-iPr(2)C(6)H(3)N(SiMe(3))Al(C triplebond CSiMe(3))(3))(-)].0.75 dioxane (1), [(Li(+))(2).(dioxane)(7)](0.5) [2,6-iPr(2)C(6)H(3)N(SiMe(3))Ga(C triplebond CSiMe(3))(3)(-)].1.5 dioxane (2), and [(Li(+))(2).(dioxane)(7)](0.5) [2,6-iPr(2)C(6)H(3)N(SiMe(3))In(C triplebond CSiMe(3))(3)(-)].1.5 dioxane (3) by the reaction of the corresponding organo metal chloride with LiC triplebond CSiMe(3) are reported. The neutral ethynyl compounds Br-Al(C triplebond CtBu)(2).2 THF (4), Cl-Ga(C triplebond CtBu)(2).THF (5), Cl-In(C triplebond CtBu)(2).2 THF (6), Al(C triplebond CtBu)(3).C[N(Me)CMe](2) (7), Ga(C triplebond CtBu)(3).dioxane (8), and In(C triplebond CtBu)(3).NEt(3) (9) have been obtained in good yields from the reaction of AlBr(3), GaCl(3), and InCl(3) with LiC triplebond CtBu in the presence of a Lewis base. Compound 7 is the first heterocyclic carbene substituted ethynyl derivative. Aluminum and gallium compounds with three terminal ethynyl groups Al(C triplebond CPh)(3).NMe(3) (10) and Ga(C triplebond CPh)(3).NMe(3) (11) have been prepared by the reaction of AlH(3).NMe(3) or GaH(3).NMe(3) with three equivalents of phenylethyne. All the above-mentioned compounds have been structurally studied. In compound 1 the lithium ion is coordinated to the three terminal ethynyl groups, whereas in compounds 2 and 3 the lithium is coordinated to the solvent (dioxane). Compound 8 crystallizes as a coordination polymer with dioxane molecules bridging the individual gallium units.  相似文献   

18.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

19.
The reactions of the hydrido-triruthenium cluster complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(CO)9] (1; H2NNMe2 = 1,1-dimethylhydrazine) with alkynes that have alpha-hydrogen atoms give trinuclear derivatives containing edge-bridging allyl or face-capping alkenyl ligands. Under mild conditions (THF, 70 degrees C) the isolated products are as follows: [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-anti-EtC3H3)(mu-CO)2(CO)6] (2) and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-syn-EtC3H3)(mu-CO)2(CO)6] (3) from 3-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-anti-PhC3H4)(mu-CO)2(CO)6] (4), [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-MeCCHPh)(mu-CO)2(CO)6] (5) and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-PhCCHMe)(mu-CO)2(CO)6] (6) from 1-phenyl-1-propyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-anti-PrC3H4)(mu-CO)2(CO)6] (7), [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-BuCCH2)(mu-CO)2(CO)6] (8), and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HCCHBu)(mu-CO)2(CO)6] (9) from 1-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HOH2CCCH2)(mu-CO)2(CO)6] (10) from propargyl alcohol; and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-MeOCH2CCH2)(mu-CO)2(CO)6] (11) from 3-methoxy-1-propyne. The regioselectivity of these reactions depends upon the nature of the alkyne reagent, which affects considerably the kinetic barriers of important reaction steps and the stability of the final products. It has been established that the face-capped alkenyl derivatives are not precursors to the allyl products, which are formed via edge-bridged alkenyl intermediates. At higher temperature (toluene, 110 degrees C), the complexes that have allyl ligands with an anti substituent are isomerized into allyl derivatives with that substituent in the syn position, for example, 4 into [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-syn-PhC3H4)(mu-CO)2(CO)6] (14). The diene complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(mu-kappa(4)-trans-EtC4H5)(CO)7] (13) has been obtained from the thermolysis of compounds 2 and 7 at 110 degrees C (3 and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-syn-PrC3H4)(mu-CO)2(CO)6] (12) are also formed in these reactions). A DFT theoretical study has allowed a comparison of the thermodynamic stabilities of isomeric compounds and has helped rationalize the experimental results. Mechanistic proposals for the synthesis of the allyl complexes and their isomerization processes are also provided.  相似文献   

20.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号