首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations into the pyrolytic behaviours of oil shale, poly (ethylene terephthalate) (PET) and their mixture have been conducted using a thermogravimetric analyzer. Experiments were carried out dynamically by increasing the temperature from 298 to 1,273 K with heating rates of 2–100 K/min under a nitrogen atmosphere. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperature of each component in the mixture was higher than those the individual components; thus an increase in thermal stability was expected. The kinetic processing of thermogravimetric data was carried out using Flynn–Wall–Ozawa (FWO) method.  相似文献   

2.
The conditions of synthesis of statistical poly(ethylene succinate-co-terephthalate) copolymers (2GTS) and high molecular weight poly(ethylene succinate) (PES) with good hydrolytic and optical parameters, designed for the production of biodegradable products and resins, are presented in this article. Copolymers were prepared by melt polycondensation of bis-(β-hydroxyethylene terephthalate) (BHET) and succinic acid (SA) with excess of ethylene glycol (2G) in the presence of a novel titanium/silicate catalyst (C-94) and catalytic grade of germanium dioxide (GeO2) as cocatalyst. The chemical structure and physical properties of those materials were characterized by 1H NMR, FT-IR, dynamical-mechanical thermal analyses (DMTA), differential scanning calorimetry (DSC), solution viscosity and spectroscopic methods. The hydrolytic degradation was performed in a water solution with variable pH, also in garden soil and in compost. The highest hydrolytic degradation rate was observed for pH 4 and for compost. Better hydrolytic degradation values in compost medium were observed for copolyester prepared in the presence of GeO2 as polycondensation cocatalyst. The copolyester with 40 mol% of aliphatic units was chosen for industrial syntheses which were performed in ELANA and subsequently the processing parameters and compatibility with potato starch of this polyester were checked by BIOP Biopolymer Technologies AG.  相似文献   

3.
Poly(trimethylene terephthalate) (PTT)/poly(ethylene naphthalate) (PEN) blends were miscible in the amorphous state in all of the blend compositions studied, as evidenced by a single, composition-dependent glass transition temperature (Tg) observed for each blend composition. The variation in the Tg value with the blend composition was well predicted by the Gordon-Taylor equation, with the fitting parameter being 0.57. The cold-crystallization peak temperature decreased with increasing PTT content, while the melt-crystallization peak temperature decreased with increasing amount of the minor component. The subsequent melting behavior after both cold- and melt-crystallization exhibited melting point depression, in which the observed melting temperatures decreased with increasing amount of the minor component. During melt-crystallization, both components in the blends crystallized concurrently just to form their own crystals. The blend with 60% w/w of PTT exhibited the lowest total apparent degree of crystallinity.  相似文献   

4.
Changes in poly(ethylene terephthalate) subjected to electron beam irradiation at doses up to 15 MGy and dose rate of 1.65 MGy/h, were investigated by differential scanning calorimetry, molecular weight measurement, X-ray photoelectron spectroscopy, and scanning electron microscopy. Irradiated samples showed a decrease of molecular weight with a minimum at 5 MGy, which is attributed to chain scission of the macromolecules and then an increase at further doses due to branching and some degradation effect. Irradiation in air is not an important factor because the high dose rate of irradiation inhibits oxygen diffusion in the samples.  相似文献   

5.
Poly(ethylene terephthalate) (PET) from an industrial manufacturer was depolymerized by ethylene glycol in the presence of a novel catalyst: ionic liquids. It was found that the purification process of the products in the glycolysis catalyzed by ionic liquids was simpler than that catalyzed by traditional compounds, such as metal acetate. Qualitative analysis showed that the main product in the glycolysis process was the bis(hydroxyethyl) terephthalate (BHET) monomer. Thermal analysis of the glycolysis products was carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and water content in the catalyst on the conversion of PET, selectivity of BHET, and distribution of the products were investigated. Results show that reaction temperature is a critical factor in this process. In addition, a detailed reaction mechanism of the glycolysis of PET was proposed.  相似文献   

6.
The chemical recycling of waste poly(ethylene terephthalate) (PET) using castor oil (CO) as a reagent is reported. CO presents a renewable alternative to petrochemical based reagents, e.g. glycols, and enables also substantial modification of final physico-chemical properties of a received product. Advantageously, microwave irradiation was used to accelerate the depolymerization of PET. A composition of obtained product was strongly influenced by the reaction temperature. When the decomposition of PET was performed at temperature higher than 240 °C, then a significant extent of side products based on PET oligomers and transesterified CO was observed due to dehydration and hydrolysis of CO. Contrary to that, PET decomposition took place at slow rate below 230 °C and the optimal reaction temperature lies in the relatively narrow interval from 230 °C to 240 °C. The product prepared in the optimal temperature range did not contain any high molecular weight PET oligomers. MALDI-TOF mass spectrometry enabled to identify the structures included in the obtained polyol product. The maximum number of six repeating monomeric unit of PET was found in the product, which confirmed practically the complete depolymerization of PET chain and good reactivity of the acylester hydroxyl groups of CO.  相似文献   

7.
Colour formation in poly(ethylene terephthalate) during melt processing   总被引:1,自引:0,他引:1  
The discolouration, that occurs in virgin poly(ethylene terephthalate) - PET during melt processing, was studied using various bulk and surface analytical techniques. Proton nuclear magnetic resonance (1H NMR) was used to study the bulk chemical changes occurring in the polymer during thermo-oxidative degradation. Chemical derivatisation with trifluoroacetic anhydride (TFAA) was used to label the hydroxyl groups introduced on the polymer surface by thermal oxidation.From the surface analysis studies using photoacoustic Fourier transform infrared spectroscopy (PA/FT-IR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and X-ray photoelectron spectroscopy (XPS) it was evident that colour formation starts initially with the hydroxylation of the terephthalic ring. Further, the formation of additional carbonyl functionalities and conjugated chromophoric systems complete the colour formation process.  相似文献   

8.
Series of PTT-b-PEO copolymers with different composition of rigid PTT and PEO flexible segments were synthesized from dimethyl terephthalate (DMT), 1,3-propanediol (PDO), poly(ethylene glycol) (PEG, Mn = 1000 g/mol) in a two stage process involving transesterification and polycondensation in the melt. The weight fraction of flexible segments was varied between 20 and 70 wt%. The molecular structure of synthesized copolymers was confirmed by 1H NMR and 13C NMR spectroscopy. The superstructure of these polymers was characterized by DSC, DMTA, WAXS and SAXS measurements. It was observed that domains of three types can exist in PTT-b-PEOT copolymers: semi-crystalline PTT, amorphous PEO rich phase (amorphous PEO/PTT blended phase) and semi-crystalline PEO phase. Semi-crystalline PEO phase was observed only at temperature below 0 °C for sample containing the highest concentration of PEO segment. The phase structure, thermal and mechanical properties are effected by copolymer composition. The copolymers containing 30÷70 wt% of PEO segment posses good thermoplastic elastomers properties with high thermal stability. Hardness and tensile strength rise with increase of PTT content in copolymers.  相似文献   

9.
Timahdit oil shale was subjected to supercritical water extraction. The results reveal significant difference in oil yields and composition when compared with those obtained from conventional pyrolysis. In addition, the effect of temperature and residence time on the supercritical water extraction of oil was investigated in a set of three experiments. The results revealed that the yield and the fraction of paraffins and aromatics increase while the percentage of asphaltenes decreases as the temperature is increased from 380 to 400°C. The residence time was found to affect the yield and the fraction of asphaltenes and polar compounds.  相似文献   

10.
In the present study, the effect of silica nanoparticles, on the solid state polycondensation (SSP) kinetics of poly(ethylene terephthalate) (PET) is thoroughly investigated. At silica concentrations less than 1 wt% and reaction temperatures between 200 and 230 °C higher intrinsic viscosity (IV) values were measured, compared to neat PET at all reaction times. However, with 1 wt% of nanosilica (n-SiO2), the IV increase of the nanocomposites was similar to that of neat PET and a further increase to 5 wt% n-SiO2 resulted in significantly lower IV values. A simple kinetic model was also employed to predict the time evolution of IV, as well as the carboxyl and hydroxyl content during SSP. The kinetic parameters of the transesterification and esterification reactions were estimated at different temperatures with or without the addition of n-SiO2. The activation energies of both reactions were determined together with the concentration of inactive end-groups. From the experimental measurements and the theoretical simulation results it was proved that n-SiO2 in small amounts (less than 1 wt%) enhances both the esterification and transesterification reactions at all studied temperatures acting as a co-catalyst. However, as the amount of nanosilica increases a number of inactive hydroxyl groups were estimated corresponding to participation of these groups in side reactions with the nanosilica particles. These side reactions lead initially to branched PET chains and eventually (5 wt% n-SiO2 concentration) to crosslinked structures.  相似文献   

11.
Poly(ethylene terephthalate) (PET) films were treated by argon plasma following by graft copolymerization with acrylic acid (AAc). The obtained PET-surface grafted PAA (PET-g-PAA) was coupled with chitosan (CS) and o-carboxymethylchitosan (OCMCS) molecules, respectively. Their surface physicochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle and streaming potential measurements. The PET-g-PAA surface containing carboxylic acid, CS immobilized PET surface containing amino and OCMCS immobilized PET surface containing both carboxylic acid and amino groups, make the PET surface exhibited a hydrophilic character. The blood compatibility was evaluated by platelet contacting experiments and protein adsorption experiments in vitro. The results demonstrate that the PET surface coupling OCMCS shows much less platelet adhesive and fibrinogen adsorption compared to the other surface modified PET films. The anticoagulation of PET-OCMCS is ascribed to the suitable balance of hydrophobicity/hydrophilicity, surface zeta potential and the low adsorption of protein.  相似文献   

12.
In the present paper, we study the effect of both morphology and compatibilization on the reaction to fire of blends of recycled poly(ethylene terephthalate) (PETr) with recycled polycarbonate (PCr). It is shown that while the flame retardancy of blends containing less than 50% w/w of PCr increases almost linearly with PCr content, blends containing more than 50% w/w of PCr react to fire like pure PCr. This change of reaction to fire correlates with the formation of a continuous PCr phase in the blend.The compatibilization of the blend by a trans-esterification reaction leading to the formation of copolymers at the interface decreases the overall fire performances due to PETr chain breaking as a side effect which results in a strong decrease of blend viscosity and of the temperature at which mass loss begins.  相似文献   

13.
Poly(butylene terephthalate) (PBT) and poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) were pyrolysed in a fixed bed reactor in the presence of calcium hydroxide (Ca(OH)2) in order to obtain benzene and naphthalene, respectively. In these experiments different ratios of polymer and Ca(OH)2 were used. Also the temperature was varied in a range between 600 °C and 800 °C. It was found that the highest yield of benzene (67%) was obtained at a temperature of 700 °C and a molar Ca(OH)2/PBT ratio of 10. The amount of carbon, fixed in the reactor residue after the experiment, was reduced from 56% for pure PBT to 38% under these conditions. Aromatic byproducts were reduced, as well, while the amount of 1,3-butadiene increased. Tetrahydrofuran was just formed under the influence of Ca(OH)2.For PEN, the optimal conditions were found at a temperature of 600 °C and a molar Ca(OH)2/PEN ratio of 5. A naphthalene yield of 80% from PEN was obtained. The rise of the naphthalene yield was caused by a more effective decomposition of the polyester by Ca(OH)2, which led to the reduction of carbon in the reactor residue after the experiment from 59% for pure PEN to 10% under optimised conditions. The part of aromatic byproducts changed just slightly.  相似文献   

14.
The Monte Carlo (MC) method based on the rotational-isomeric-state (RIS) model is adopted in studying the elastic behavior of poly(ethylene terephthalate) (PET) chains in this paper. The mean-square end-to-end distance 〈R2〉, the mean-square radius of gyration 〈S2〉, and the ratio of 〈R2〉/〈S2〉 all increase with elongation ratio λ. The interior conformations are also investigated through calculating the a priori probability of rotational state in the process of tensile elongation. The radius of gyration tensor S is introduced here in order to measure the shape of PET chains, and increases with elongation ratio λ, however, some different behaviors are obtained for . Here , and are the eigenvalues of the radius of gyration tensor . The average energy per repeat unit 〈U〉 and the average free energy per repeat unit 〈A〉 are also calculated, and we find that the average energy decreases with elongation ratio λ, however, the average free energy per repeat unit increases with elongation ratio λ. Elastic force f, energy contribution to force fU, and entropy contribution to force fS are also investigated. Both elastic force f and entropy contribution to force fS increases with λ, however, energy contribution to force fU and the ratio fU/f decreases with λ. The ratio of fU/f is less than zero and almost independent of chain length. The results of these microscopic calculations may explain some macroscopic phenomena of rubber elasticity.  相似文献   

15.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

16.
The glass-transition temperature and non-isothermal crystallization of poly(trimethylene terephthalate)/poly(ethylene 2,6-naphthalate) (PTT/PEN) blends were investigated by using differential scanning calorimeter (DSC). The results suggested that the binary blends showed different crystallization and melting behaviors due to their different component of PTT and PEN. All of the samples exhibited a single glass-transition temperature, indicating that the component PTT and PEN were miscible in amorphous phase. The value of Tg predicted well by Gordon-Taylor equation decreased gradually with increasing of PTT content. The commonly used Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of non-isothermal crystallization. The kinetic parameters suggested that the PTT content improved the crystallization of PEN in the binary blend. The crystallization growth dimension, crystallization rate and the degree of crystallinity of the blends were increased with the increasing content of PTT. The effective activation energy calculated by the advanced iso-conversional method developed by Vyazovkin also concluded that the value of Ea depended not only on the system but also on temperature, that is, the binary blend with more PTT component had higher crystallization ability and the crystallization ability is increased with increasing temperature. The kinetic parameters U* and Kg were also determined, respectively, by the Hoffman-Lauritzen theory.  相似文献   

17.
 Poly(ethylene terephthalate) (PET) was annealed in vacuum at different temperatures (190–260 °C) for different times (10 min–24 h) in order to examine the mechanical properties (microhardness) of PET samples with a wide range of molecular weights (10 000–120 000). Short annealing times result in a twofold decrease in mol. wt. due to hydrolytic decomposition. However, long annealing times give rise to a substantial molecular weight increase. It is found that microhardness (H) rises linearly with the degree of crystallinity obtained during up-grading of mol. wt. and its extrapolation leads to H-values of completely crystalline PET, H PET c=405 MPa for samples with conventional mol. wt. and of 426 MPa for samples with mol. wt. higher than 30 000. It is shown that the increase of mol. wt. for each set of samples with a given range of degree of crystallinity also causes a slight increase of H. The influence of mol. wt. upon hardness is discussed in the light of the changes in the physical structure (crystallinity, crystal thickness) which is formed at given heat treatment conditions. Received: 29 April 1997 Accepted: 23 September 1997  相似文献   

18.
Amorphous poly(ethylene terephthalate) was annealed at temperatures around the glass transition temperature and then heated up in differential scanning calorimeter at 20 °C min−1. It was found that the annealing favored the subsequent cold crystallization and this effect became stronger with increasing annealing temperature. The experimental results were explained by considering the structural change during the annealing.  相似文献   

19.
The effects of transesterification on the miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) were studied. Blends were obtained by solution precipitation at room temperature to avoid transesterification during blend preparation. The physical blends and transesterified products were analyzed by wide-angle x-ray scattering, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. It was found that the physical blends are immiscible and when the extent of transesterification reaches 50% of the completely randomized state, independent of blend composition, the blends are not crystallizable and show a single glass transition temperature between those of starting polymers. The interchange reactions were significantly influenced by annealing temperature and time but negligibly by blend composition. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号