首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Choi E  Loo D  Dennis JW  O'Leary CA  Hill MM 《Electrophoresis》2011,32(24):3564-3575
Alterations in protein glycosylation occur during development and progression of many diseases, hence glycomics and glycoproteomics have emerged as important tools in glycobiomarker discovery. High-throughput glycan profiling can now be achieved with the recent developments in MS-based techniques. To enable identification and rapid monitoring of glycosylation changes in serum proteins, we developed a semi-automated high-throughput glycoprotein biomarker discovery platform termed lectin magnetic bead array-coupled tandem mass spectrometry (LeMBA-MS) which includes (i) effective single-step serum glycoprotein isolation using a panel of 20 individual lectin-coated magnetic beads in microplate format, (ii) on-bead trypsin digestion, and (iii) nanoLC-MS/MS with lectin exclusion list. With use of appropriate sequence databases, LeMBA-MS can detect glycosylation changes regardless of the species. By spiking known amounts of titrated ovalbumin to a serum sample, we report nanomolar sensitivity, and linearity of response of LeMBA-MS using concanavalin A-coupled beads. Neuraminidase treatment led to reduction of binding to sialic acid-binding lectins. Interestingly, we found that desialylation caused increased binding of haptoglobin and hemopexin to mannose-specific lectins, pointing to the importance of identifying a signature of lectin-binding. High-throughput LeMBA-MS to generate glycosylation signatures will facilitate glycobiomarker discovery. LeMBA can be coupled to down-stream detection platforms for validation, making it a truly versatile platform.  相似文献   

2.
Bedair M  Oleschuk RD 《The Analyst》2006,131(12):1316-1321
An affinity porous polymer monolith is utilized as a nanoelectrospray emitter as well as an online affinity capture column for the preconcentration of glycans. Porous polymer monolith (PPM) assisted electrospray provides a facile methodology for coupling microfluidics to mass spectrometry that is sheathless and with zero dead volume. Affinity PPM was photopolymerized using glycidyl methacrylate/ethylene dimethacrylate utilizing different porogenic solvents based on aliphatic alcohols to provide PPMs with a variety of pore sizes. The use of longer alkyl chain alcohols decreased the pore size of the formed PPM as indicated by the higher flow back pressure generated. The effect of the pore size on the stability of the electrospray was tested showing higher stability of the TIC with lower pore size. A lectin, namely Concanavaline A, was immobilized on glycidyl methacrylate/ethylene dimethacrylate using the Schiff base method to provide an affinity monolith for high mannose glycans. The amount of the lectin immobilized was studied as a function of the porogenic solvent used in the polymerization. The glycopeptides of the glycoprotein Ribonuclease B was preconcentrated on the affinity PPM sprayer and detected by tandem MS.  相似文献   

3.
We report on the preparation of an improved multi-lectin affinity support for HPLC separations. We combined the selectivity of three different lectins: concanavalin A (ConA), wheat germ agglutinin (WGA), and jacalin (JAC). Each lectin was first covalently immobilized onto a polymeric matrix and then the three lectin media were combined in equal ratios. The beads were packed into a column to produce a mixed-bed multi-lectin HPLC column (high-performance multi-lectin affinity chromatography (HP-M-LAC)) for fast chromatographic affinity separations. The support was characterized with respect to kinetics of immobilization, ligand density, and binding capacity for human plasma glycoproteins. A high lectin density (15 mg/mL of beads) was found to be optimal for the binding of glycoproteins from human plasma. A single clinical sample can be fractionated in less than 10 min per run, making this a useful sample preparation tool for proteomics/glycoproteomics studies associated with disease abnormalities.  相似文献   

4.
Monolithic capillary columns with surface bound lectin affinity ligands were introduced for performing lectin affinity chromatography (LAC) by nano-liquid chromatography (nano-LC). Two kinds of polymethacrylate monoliths were prepared, namely poly(glycidyl methacrylateco-ethylene dimethacrylate) and poly(glycidyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) to yield neutral and cationic macroporous polymer, respectively. Two lectins including concanavalin (Con A) and wheat germ agglutinin (WGA) were immobilized onto the monolithic capillary columns. The neutral monoliths with immobilized lectins exhibited lower permeability under pressure driven flow than the cationic monoliths indicating that the latter had wider flow-through pores than the former. Both types of monoliths with immobilized lectins exhibited strong affinity toward particular glycoproteins and their oligosaccharide chains (i.e., glycans) having sugar sequences recognizable by the lectin. Due to the strong binding affinity, the monoliths with surface bound lectins allowed the injection of relatively large volume (i.e., several column volumes) of dilute samples of glycoproteins and glycans thus allowing the concentration of the glycoconjugates and their subsequent isolation and detection at low levels (approximately 10(-8) M). To further exploit the lectin monoliths in the isolation of glycoconjugates, two-dimensional separation schemes involving LAC in the first dimension and reversed-phase nano-LC in the second dimension were introduced. The various interrelated methods established in this investigation are expected to play a major role in advancing the sciences of "nano-glycomics".  相似文献   

5.
Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.  相似文献   

6.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The cell membrane is composed of a network of glycoconjugates including glycoproteins and glycolipids that presents a dense matrix of carbohydrates playing critical roles in many biological processes. Lectin-based technology has been widely used to characterize glycoconjugates in tissues and cell lines. However, their specificity toward their putative glycan ligand and sensitivity in situ have been technologically difficult to study. Additionally, because they recognize primarily glycans, the underlying glycoprotein targets are generally not known. In this study, we employed lectin proximity oxidative labeling (Lectin PROXL) to identify cell surface glycoproteins that contain glycans that are recognized by lectins. Commonly used lectins were modified with a probe to produce hydroxide radicals in the proximity of the labeled lectins. The underlying polypeptides of the glycoproteins recognized by the lectins are oxidized and identified by the standard proteomic workflow. As a result, approximately 70% of identified glycoproteins were oxidized in situ by all the lectin probes, while only 5% of the total proteins were oxidized. The correlation between the glycosites and oxidation sites demonstrated the effectiveness of the lectin probes. The specificity and sensitivity of each lectin were determined using site-specific glycan information obtained through glycomic and glycoproteomic analyses. Notably, the sialic acid-binding lectins and the fucose-binding lectins had higher specificity and sensitivity compared to other lectins, while those that were specific to high mannose glycans have poor sensitivity and specificity. This method offers an unprecedented view of the interactions of lectins with specific glycoproteins as well as protein networks that are mediated by specific glycan types on cell membranes.

A lectin proximity oxidative labeling (Lectin PROXL) tool was developed to identify cell surface glycoproteins that contain glycans that are recognized by lectins.  相似文献   

8.
蛋白质的糖基化是最重要的翻译后修饰之一,与蛋白质结构和功能的关系密切。凝集素亲和色谱是蛋白质糖基化研究中很常用的工具,不同的凝集素可以对不同的单糖或寡糖有特异的富集作用。麦胚凝集素(WGA)由于其特异作用的糖型广泛存在而成为使用最多的凝集素之一。在本研究中,发现将WGA用于糖肽亲和富集会导致部分肽段的降解,从而导致后续的肽段序列分析的失败。本文用4种标准蛋白质对这种现象进行了验证,结果表明肽段的降解可以发生在多个位点,其中较多地发生在酪氨酸、苯丙氨酸及亮氨酸的羧基端。这一结果提示:在糖蛋白质组研究中,如果应用WGA富集糖肽并采用质谱进行鉴定,则采用半酶切或非特异性酶切的检索策略更为合适。  相似文献   

9.
高文杰  白玉  刘虎威 《色谱》2021,39(9):981-988
蛋白质糖基化作为最重要的翻译后修饰之一,在生物体诸如细胞信号转导、蛋白质翻译调控、免疫应答等诸多生命过程中发挥重要作用。此外,蛋白质的异常糖基化还与肿瘤等疾病的发生发展密切相关,这为以糖蛋白为目标的疾病生物标志物的发现提供了可能。尽管质谱已经成为糖蛋白质组学的重要分析工具,但糖肽的低丰度和低电离效率使得其直接质谱分析仍面临挑战。在糖蛋白质组学研究中,从复杂的生物样品中富集糖蛋白和糖肽是重要的环节。磁性固相萃取(MSPE)是一种操作简单、成本低和萃取效率高的样品预处理方法。在磁性固相萃取中,磁性吸附剂是影响萃取效果的关键,将功能化磁性纳米材料作为吸附剂进行糖蛋白质组学研究已经得到广泛应用。该文综述了糖分子、离子液体、凝集素、硼酸亲和配体、金属有机框架、共价有机骨架等功能化磁性纳米材料的制备及其在糖蛋白及糖肽富集中的应用。上述功能化磁性纳米材料具有高比表面积、大量作用位点等特点,其富集机理包括亲水相互作用色谱、凝集素亲和作用色谱、硼酸化学法和肼化学法等,主要应用于血清、血浆、细胞、组织、唾液等样品的糖蛋白和糖肽的富集。该文引用了近十年来发表的约90篇源于科学引文索引(SCI)与中文核心期刊的相关论文,并于文末对磁性纳米材料在糖蛋白和糖肽富集领域的发展趋势进行了展望。  相似文献   

10.
Halfinger B  Sarg B  Lindner HH 《Electrophoresis》2011,32(24):3546-3553
Investigation of site-specific protein O-glycosylation remains a formidable task in post-translational modification-centred proteomics. In particular, the determination of O-glycosylated amino acids in mucin-like glycopeptides lags far behind the techniques for phosphorylation site and N-glycosylation site identification, for which well-established enrichment techniques are available. The present work investigated β-elimination of mucin-like O-glycopeptides with a mild alkylamine base and concomitant Michael-type addition using 2-mercaptoethanol as nucleophile applied to synthetic GalNAcylated O-glycopeptides as well as exoglycosidase-treated endogenous peptides isolated from human blood plasma. This strategy permits O-glycosylated sites to be unambiguously localized, even in multiple-glycosylated peptides. Peptides covalently modified with the glycan surrogate exhibit excellent backbone fragmentation in MS/MS due to their stability during CID.  相似文献   

11.
α1‐Acid glycoprotein (AGP) was previously shown to be a marker candidate of disease progression and prognosis of patients with malignancies by analysis of its glycoforms via lectins. Herein, affinity capillary electrophoresis of fluorescein‐labeled AGP using lectins with the aid of laser‐induced fluorescence detection was developed for quantitative evaluation of the fractional ratios of concanavalin A‐reactive or Aleuria aurantia lectin‐reactive AGP. Labeled AGP was applied at the anodic end of a fused‐silica capillary (50 μm id, 360 μm od, 27 cm long) coated with linear polyacryloyl‐β‐alanyl‐β‐alanine, and electrophoresis was carried out for about 10 min in 60 mM 3‐morpholinopropane‐1‐sulfonic acid‐NaOH buffer (pH 7.35). Addition of the lectins to the anode buffer resulted in the separation of lectin‐reactive glycoform peaks from lectin‐non‐reactive glycoform peaks. Quantification of the peak area of each group revealed that the percent of lectin‐reactive AGP is independent of a labeling ratio ranging from 0.4 to 1.5 mol fluorescein/mol AGP, i.e. the standard deviation of 0.5% for an average of 59.9% (n=3). In combination with a facile procedure for micro‐purification of AGP from serum, the present procedure, marking the reactivity of AGP with lectins, should be useful in determining the prognosis for a large number of patients with malignancies.  相似文献   

12.
Approximately half of the molecular mass of gp120, the receptor-binding envelope protein of human immunodeficiency virus (HIV), consists of N-linked glycans. Nearly half of these glycans are of the high mannose type. These high mannose glycans furnish a rich forest of mannose residues on the virus surface making HIV a prime target for interaction with mannose-specific lectins of the immune system. This review focuses on the known interactions between gp120 and immune system lectins some of which HIV appears to exploit. The effect of variation in glycosylation of gp120, especially with respect to clades of HIV, on binding of immune system lectins is highlighted.  相似文献   

13.
Terminal “high‐mannose oligosaccharides” are involved in a broad range of biological and pathological processes, from sperm‐egg fusion to influenza and human immunodeficiency virus infections. In spite of many efforts, their synthesis continues to be very challenging and actually represents a major bottleneck in the field. Whereas multivalent presentation of mannopyranosyl motifs onto a variety of scaffolds has proven to be a successful way to interfere in recognition processes involving high‐mannose oligosaccharides, such constructs fail at reproducing the subtle differences in affinity towards the variety of protein receptors (lectins) and antibodies susceptible to binding to the natural ligands. Here we report a family of functional high‐mannose oligosaccharide mimics that reproduce not only the terminal mannopyranosyl display, but also the core structure and the branching pattern, by replacing some inner mannopyranosyl units with triazole rings. Such molecular design can be implemented by exploiting “click” ligation strategies, resulting in a substantial reduction of synthetic cost. The binding affinities of the new “click” high‐mannose oligosaccharide mimics towards two mannose specific lectins, namely the plant lectin concanavalin A (ConA) and the human macrophage mannose receptor (rhMMR), have been studied by enzyme‐linked lectin assays and found to follow identical trends to those observed for the natural oligosaccharide counterparts. Calorimetric determinations against ConA, and X‐ray structural data support the conclusion that these compounds are not just another family of multivalent mannosides, but real “structural mimics” of the high‐mannose oligosaccharides.  相似文献   

14.
Previously, we reported that the distribution of glycoproteins into the lectin displacement fractions of a multi-lectin affinity column was determined by the glycosylation patterns of the proteins. This distribution was observed by the sequential use of displacers specific to the lectins in the column. In this study we have evaluated the multi-lectin column (containing Concanavalin A, Wheat germ agglutinin and Jacalin lectin) to screen glycoproteins with known glycosylation pattern changes. The presence of a glycoprotein in a given displacer fraction was determined by LC-MS/MS analysis of a tryptic digest. We have used the enzyme neuraminidase to modify the oligosaccharide chains present in human transferrin, and used the enzymes, neuraminidase and fucosidase, to modify glycoproteins present in human serum. Then, by comparison with the untreated samples, we demonstrated a distribution shift of the enzyme-treated serum glycoproteins in the displacement fractions isolated from the multi-lectin column. The fractions were analyzed by a protein assay, Sequest rank comparison and peak area measurement from the extracted ion chromatogram. The results indicated that the multi-lectin affinity column (M-LAC) is sensitive to changes in the content of sialic acid and fucosyl residues present in serum glycoproteins, and has the potential to be used to screen serum proteins for glycosylation changes due to disease. In addition, the use of a glycosidase to induce specific structural changes in glycoproteins can support the development of multi-lectin column formats specific for detecting changes in the glycoproteome of certain diagnostic fluids and types of disease.  相似文献   

15.
Studies of orosomucoid (alpha 1-acid glycoprotein) in human serum have revealed that orosomucoid is a mixture of molecules with differences in the glycan chains. This microheterogeneity has been studied using crossed affinoimmuno-electrophoresis with the lectin concanavalin A which binds to biantennary glycans. The relative proportions of the three orosomucoid subtypes are altered in various pathological conditions independently of the total serum orosomucoid concentration. There are reproducible differences in microheterogeneity patterns between some pathological conditions: Acute tissue injury or inflammation results in a high proportion of orosomucoid with biantennary glycans. Conditions with increased estrogen levels are associated with a high proportion of orosomucoid with tri- or tetraantennary glycans and a low total serum orosomucoid concentration. Chronic inflammation also seems to be associated with a high proportion of orosomucoid with tri- or tetraantennary glycans but with a high total serum concentration of orosomucoid. Other diseases, such as cancer, can not be associated with any specific microheterogeneity pattern. The microheterogeneity pattern in these conditions seems to be determined by disease activity and unspecific inflammation in surrounding tissues.  相似文献   

16.
Counterflow isotachophoresis on cellulose acetate membranes of human alpha-fetoprotein (AFP) was performed with concanavalin A, lentil lectin, and castor bean lectin driven by electroendosmotic counterflow. This counterflow caused a uniform stream of lectin to migrate towards the cathode against AFP with carrier ampholytes in steady-state position. Retardation of microheterogeneity forms bound to lectins was observed, giving results comparable to standard crossed affinity immunoelectrophoresis. Smaller amounts of lectins and more diluted samples of AFP could be used in the described method.  相似文献   

17.
Negative ion tandem mass spectrometry (MS/MS) spectra of three isomeric triantennary N-linked glycans provided clear differentiation between the isomers and confirmed the occurrence of an isomer that was substituted with galactose on a bisecting GlcNAc (1 --> 4-substituted on the core mannose) residue recently reported by Takegawa et al. from N-glycans released from human immunoglobulin G (IgG). We extend this analysis of human serum IgG to reveal an analogue of the fucosylated triantennary glycan reported by Takegawa et al. together with a third compound that lacked both the sialic acid and the fucose residues. In addition, we demonstrate the biosynthesis of bisected hybrid-type glycans with the galactose modification, with and without core fucose, on the stem cell marker glycoprotein, 19A, expressed in a partially ricin-resistant human embryonic kidney cell line. It would appear, therefore, that this modification of N-linked glycans containing a galactosylated bisecting GlcNAc residue may be more common than originally thought. Negative ion MS/MS analysis of glycans is likely to prove an invaluable tool in the analysis and monitoring of therapeutic glycoproteins.  相似文献   

18.
To investigate the density‐dependent binding of glycans by lectins using carbohydrate microarrays, a number of C‐terminal hydrazide‐conjugated neoglycopeptides with various valences and different spatial arrangements of the sugar ligands were prepared on a solid support. The synthetic strategy includes (1) assembly of alkyne‐linked peptides possessing C‐terminal hydrazide on a solid support, (2) coupling of azide‐linked, unprotected sugars to the alkyne‐linked peptides on the solid support utilizing click chemistry, and (3) release of the neoglycopeptides from the solid support. By using this synthetic methodology, sixty five neoglycopeptides with a valency ranging from 1 to 4 and different spatial arrangements of the carbohydrate ligands were generated. Carbohydrate microarrays were constructed by immobilizing the prepared neoglycopeptides on epoxide‐derivatized glass slides and were used to analyze the density‐dependent binding of glycans by lectins. The results of binding property determinations show that lectin binding is highly dependent on the surface glycan density.  相似文献   

19.
《Analytical letters》2012,45(11):1711-1724
Abstract

A MALDI mass spectrometry method using Bruker Daltonic's LIFT technology for MS/MS analysis has been developed for profiling and characterizing low abundant N-glycans from recombinant immunoglobulin G (IgG) antibodies. In this method, Endoglycosidase H (Endo H) released N-glycans are derivatized at their reducing end with 2-aminobenzamide (2-AB) and separated by normal phase chromatography. Endo H hydrolyses the bond between the two GlcNAc residues of the trimannosyl core of high mannose and hybrid N-linked glycans, leaving the core GlcNAc attached to the protein. High mannose and hybrid type N-glycans are released from the glycoprotein whereas the more abundant, complex biantennary type oligosaccharide structures are unaffected. Analysis of Endo H treated glycan moieties by MALDI mass spectrometry identified several minor species of high mannose and hybrid type glycans. Subsequent MALDI TOF MS/MS analysis of the resulting products yielded information about structural features of the high mannose and hybrid type glycans. This study involving Endo H treatment followed by MALDI mass spectrometry coupled with LIFT technology for MS/MS analysis offers a specific and sensitive technique for visualizing, and characterizing minor glycan species.  相似文献   

20.
Glycosylation is one the most common post-translational modifications (PTM) and glycoproteins play fundamental roles in a diversity of biological processes. The development of an analytical approach to the study of variation of glycosylation patterns in serum samples has been hindered by the structural heterogeneity of this post-translational modification and the complexity of serum proteome. We have used the ability of different lectins to recognize specific glycosylation motifs to develop a specific affinity system that can achieve a comprehensive capture of serum glycoproteins. In a preliminary investigation, we evaluated the ability of five commonly used immobilized lectins to capture glycoproteins from human serum. SDS-PAGE analysis showed each lectin was able to enrich a subset of the serum glycoproteome and overlaps in lectin specificity were indeed observed. Based on these results and with the goal of studying the extent of the human serum glycoproteome, we then developed a multi-lectin affinity column containing Concanavalin A (Con A), Wheat germ and Jacalin lectin. The selection of lectins was also based on the known N-linked and O-linked glycan structures that are considered representative of the serum proteome. We then demonstrated that the capture of glycoproteins was specific, efficient and reproducible with this multi-lectin column. The results obtained with this affinity step indicated that about 10% of human serum proteins are glycosylated (weight/weight) and, after removal of six high abundance proteins, including albumin, at least 50% of the remaining proteins were glycosylated. We then evaluated the use of this affinity column to monitor changes in the pattern of glycosylation in serum samples by a controlled, stepwise release of the captured proteins from the multi-lectin affinity column with specific displacers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号