首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Gramicidin A (gA) is a linear pentadecapeptide, which exhibits various conformations depending on the environment. The conformational behavior of gA in spherical and rod-shaped cationic micelles formed by cetyltrimethylammonium bromide (CTAB) surfactant has been studied using circular dichroism (CD) and fluorescence spectroscopy, and a probable structure of gramicidin A in CTAB media has been proposed. A CD study shows that gramicidin A assumes beta(6.3) helical structure in cationic spherical as well as rod-shaped CTAB micellar media. Modeling studies show the flexibility of the side chain conformation particularly in tryptophan-9. Study of intrinsic fluorescence of tryptophans in gramicidin A indicates three distinct environments for the four-tryptophan residues in CTAB media.  相似文献   

2.
双卟啉化合物的构象平衡及π-π作用研究   总被引:8,自引:2,他引:6  
制备并表征了一系列以柔韧烷氧化相连的自由双卟啉及其锌配合物,以^1H-NMR考察了烷氧链长度及锌离子对双卟啉构象平衡的影响。结果表明,双卟啉存在开放式及闭合式构象平衡,随烷氧链的增长,构象平衡由开放式向闭合式移动,当链上碳原子数为4时最有利于双卟啉形成闭合式构象。  相似文献   

3.
Direct analysis of the monomeric and four double helical dimeric conformations of gramicidin has been achieved using packed column supercritical fluid chromatography (pSFC). Using a PRP-1 polymeric column and typical conditions of 40 degrees C column temperature, 25 MPa column pressure, and 35% n-pentanol modifier addition, all of the gramicidin conformers were readily separated. To evaluate the method, the dynamic characteristics of the monomer and dimer species were monitored as a function of solvent type, incubation time, solvent temperature, and initial concentration. The findings agree with those previously obtained by other methods but also yield new information about the relative amounts of two closely related dimers (species 1 and 2) as well as the simultaneous changes in the full dimer/monomer distribution. Results indicate that the developed pSFC method can be an informative complimentary tool for readily monitoring changes in the full profile of gramicidin species present in different environments.  相似文献   

4.
We investigate the effect of specific conformations of double-bond segments in highly polyunsaturated acyl chains on the deuterium (2)H NMR order parameters of a fully hydrated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18:0/22:6 PC) lipid bilayer. The system is analyzed by performing a molecular dynamics simulation study at ambient conditions in the fluid lamellar phase. By separately calculating the different partial contributions to the total order parameter profiles measurable experimentally, we are able to get insights into the molecular origin of earlier experimental and theoretical observations. The effect of the position of the different conformations of double-bond segments along the polyunsaturated acyl chain is also examined. As in experiments performed in a series of lipid bilayers with an increasing number of cis double bonds per lipid molecule [Holte, L. L., et al. Biophys. J. 1995, 68, 2396], we find that unsaturations influence mainly the order of the bottom half of the saturated chain. Specific conformations of the polyunsaturated chain close to the lipid headgroups have a distinct effect on the order of the bottom half of the saturated chain and on the top half of the polyunsaturated chain. Our results indicate that for SDPC the conformation of the region of the polyunsaturated chain located between the first three cis double bonds is responsible for the major effects on the orientational order of both the saturated and the polyunsaturated chains.  相似文献   

5.
Detailed comparative studies of proton relay in native and chemically modified gramicidin channels provide a unique opportunity to uncover the structural basis of biological proton transport. The function of ion channels hinges on their ability to provide surrogate solvation in narrow pore filters so as to overcome the dielectric barrier presented by biological membranes. In the potassium channel KcsA and in the cation channel gramicidin, permeant selectivity and mobility are determined by the proteinaceous matrix via hydrogen bonding, charge-dipole, and dipole-dipole interactions. In particular, main-chain carbonyl groups in these pore interiors play an essential role in the solvation of alkali ions and of protons. In this study, molecular dynamics simulations reveal how the translocation of H(+) is controlled by nanosecond conformational transitions exchanging distorted states of the peptidic backbone in the single-file region of a dioxolane-linked analogue of the gramicidin dimer. These results underline the functional role of channel dynamics and provide a mechanism for the modulation of proton currents by fluctuating dipoles.  相似文献   

6.
7.
The effects of glycine, alanine and valine substitution for leucine upon the species heterogeneity of gramicidin A incorporated into SDS micelles have been investigated. The sequential replacement of the leucine residues at positions 10, 12 and 14 produced multiple β-helical forms of the gramicidin A analogs as shown by 1H NMR spectroscopy. These results reveal the complexity of the interaction of amino acid residue side chain with the SDS micelle environment in controlling the formation of a single channel species or multiple helical forms. Clearly, a potential problem may arise if one assumes that the solubilization of the peptide, gramicidin, in micelles indicates the existence of a single form of the peptide.  相似文献   

8.
Oligoamides of 8-amino-4-isobutoxy-2-quinolinecarboxylic acid were designed and synthesized, and their helical structures were characterized in the solid state by single crystal X-ray diffraction, and in solution by 1H NMR. The monomer methyl 4-isobutoxy-8-nitro-2-quinolinecarboxylate is easily prepared in three steps from 2-nitroaninile and dimethyl acetylene dicarboxylate. Successive hydrogenations of nitro groups, saponifications of esters and couplings of amines and acids via the acid chlorides gave a dimer, tetramer, hexamer, octamer, and decamer in a convergent fashion. The oligomers were shown to adopt a bent conformation stabilized by intramolecular hydrogen bonds between amide hydrogens and adjacent quinoline nitrogens. In the solid, the dimer adopts a planar crescent shape and the octamer a helical conformation. All NMR data are consistent with similar conformations in solution. The helices are apparently remarkably stable. Some of them remain helical even at 120°C in deuterated DMSO. The structural studies confirm the predictions made by computer and demonstrate the high potency of the design principles.  相似文献   

9.
The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase.
Graphical Abstract ?
  相似文献   

10.
The degrees of conformational freedom of poly L–D β-helical chain are analyzed consistent with the helical parameters of gramicidin A structure. From conformational energy calculations, “helical librations” that can be sustained by this structure are described and the energy of libration as a function of the cavity size is presented. Two different modes of conformational change are identified corresponding to librations of all L–D -peptide units or all D–L -peptide units while retaining the helical parameters. Such helical librations are considered relative to conformational perturbations due to the presence of an ion in the channel.  相似文献   

11.
The encapsulation of guests in a confined space enables unusual conformations and reactivities. In particular, the compression of akyl chains has been obtained by self-assembled molecular capsules but such an effect has not been reported in solution for pseudorotaxane architectures. By exploiting the tendency of cyclodextrin (CD) to form head to head [3]pseudorotaxanes and the hydrogen bonding abilities of phosphate groups, we have studied the effect of the CD dimer cavity on the conformation of threaded α,ω-alkyl-diphosphate axles. The formation of [2]pseudorotaxanes and [3]pseudorotaxanes was investigated by a combination of NMR, ITC and X-ray diffraction techniques. In the solid state, the [3]pseudorotaxane with a C8 axle presents a fully extended conformation with both terminal phosphate groups interacting with hydroxyl groups of the primary rim of CDs. Such hydrogen bonding interactions are also present with the C9 and C10 axles resulting in a compression of the alkyl chain with gauche conformations in the solid state. NMR studies have shown that this effect is maintained in solution resulting in a size-dependent progressive compression of the alkyl chain by the CD [3]pseudorotaxane architecture for C9, C10 and C11 axles.

Alkyl chain compression of alkanediphosphate guests was achieved by head-to-head cyclodextrin [3]pseudorotaxanes in a mechanostereoselective self-assembly process.  相似文献   

12.
We report X-ray reflectivity (XRR) and grazing incidence X-ray diffraction (GIXD) measurements of archaeal bipolar tetraether lipid monolayers at the air-water interface. Specifically, Langmuir films made of the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius grown at three different temperatures, i.e., 68, 76, and 81 °C, were examined. The dependence of the structure and packing properties of PLFE monolayers on surface pressure were analyzed in a temperature range between 10 and 50 °C at different pH values. Additionally, the interaction of PLFE monolayers (using lipids derived from cells grown at 76 °C) with the ion channel peptide gramicidin was investigated as a function of surface pressure. A total monolayer thickness of approximately 30 ? was found for all monolayers, hinting at a U-shaped conformation of the molecules with both head groups in contact with the interface. The monolayer thickness increased with rising film pressure and decreased with increasing temperature. At 10 and 20 °C, large, highly crystalline domains were observed by GIXD, whereas at higher temperatures no distinct crystallinity could be observed. For lipids derived from cells grown at higher temperatures, a slightly more rigid structure in the lipid dibiphytanyl chains was observed. A change in the pH of the subphase had an influence only on the structure of the lipid head groups. The addition of gramicidin to an PLFE monolayer led to a more disordered state as observed by XRR. In GIXD measurements, no major changes in lateral organization could be observed, except for a decrease of the size of crystalline domains, indicating that gramicidin resides mainly in the disordered areas of the monolayer and causes local membrane perturbation, only.  相似文献   

13.
Relative alkali-cation affinity of polyoxyethylene (POE) dodecylethers in gas phase was studied by electrospray ionization (ESI) mass spectrometry using dodecylether-poly-ethoxylate (C(12)EO:n, "n" denotes ethyleneoxide unit number) nonionic surfactants, and possible helical conformations of the cationized molecules were demonstrated. The alkali-cation affinity highly depended on the cation diameters. The mass spectra of C(12)EO:8 cationized by alkali-metal ions were dominated by potassiated molecules. The results indicated that the POE moiety could have specific affinity to K(+) ions based on a host-guest interaction between POE helix and potassium ions. This is very similar to the relationships between 18-crown-6 and K(+). The ESI mass spectra exhibited the multiply cationized C(12)EO:n in addition to the singly cationized molecules. The critical EO unit numbers necessary for producing the multiply-charged cationized molecules also depended on the cation diameters. In addition, the POE surfactants highly preferred alkali cations to proton. The results were strongly supported by molecular mechanics/dynamics calculations. A helical conformation of the POE moiety of C(12)EO:15 including two K(+) ions gave a potential minimum, while a lowest energy structure of the protonated molecule took irregular conformations due to the formation of local hydrogen bonds.  相似文献   

14.
Molecular-level structures of lipids and related organic long-chain compounds were investigated by means of vibrational spectroscopic and X-ray diffraction methods. Various spectroscopic techniques applicable to structural studies of lipid systems were developed. Various types of solid-state phase transformations were found in even- and odd-numbered saturated fatty acids and their molecular mechanisms were considered. Crystal structures of some modifications of a series of cis-mono-unsaturated fatty acids were determined by the three-dimensional X-ray analysis and new types of molecular conformation as well as of subcell arrangement of the cis-mono-unsaturated acyl chains were found. An order-disorder type phase transformation accompanied with a partial melting at the interface of the molecular layers was found in some modifications of cis-mono-unsaturated fatty acids. Molecular conformations and crystal structures of the polymorphs of methyl oleate and triglycerides containing an oleoyl chain at the 2-position were investigated on the basis of the spectroscopic data.  相似文献   

15.
The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed. Furthermore, we employed the structure factor analysis to study the association of copolymer conformations and long-range order of the simulation system and found our results are in agreement with the previous experimental conclusions.  相似文献   

16.
The solution structure and the dimerization behavior of the lipophilic, highly C(alpha)-methylated model peptide, mBrBz-Iva(1)-Val(2)-Iva(3)-(alphaMe)Val(4)-(alphaMe)Phe(5)-(alphaMe)Val(6)-Iva(7)-NHMe, was studied by NMR spectroscopy and molecular dynamics simulations. The conformational analysis resulted in a right-handed 3(10)/alpha-helical equilibrium fast on the NMR time scale with a slight preference for the alpha-helical conformation. The NOESY spectrum showed intermolecular NOEs due to an aggregation of the heptapeptide. In addition, temperature-dependent diffusion measurements were performed to calculate the hydrodynamic radius. All these findings are consistent with an antiparallel side-by-side dimerization. The structure of the dimeric peptide was calculated with a simulated annealing strategy. The lipophilic dimer is held together by favorable van der Waals interactions in the sense of a bulge fitting into a groove. The flexibility of the helical conformations concerning an alpha/3(10)-helical equilibrium is shown in a 3 ns molecular dynamics simulation of the resulting dimeric structure. Both overall helical structures of each monomer and the antiparallel mode of dimerization are stable. However, transitions were seen of several residues from a 3(10)-helical into an alpha-helical conformation and vice versa. Hence, this peptide represents a good model in which two often-discussed aspects of hierarchical transmembrane protein folding are present: i <-- i + 3 and i <-- i + 4 local H-bonding interactions cause a specific molecular shape which is then recognized as attractive by other surrounding structures.  相似文献   

17.
Abstract

The conformations of azobenzene‐modified poly(α‐L‐glutamate)s (AZOPLGA) with a different degree of functionalization were examined by solid state 13C NMR. The polymer main chain conformations in AZOPLGA powders (precipitated from reaction system) changes from α‐helix to β‐sheet when the degree of functionalization increases from 12% to 56%. In addition, the solvent used for fabricating films plays an important role in organizing AZOPLGA backbones into characteristic conformation. For AZOPLGA56 (AZOPLGA with 56% of functionalization) cast films, the polymer backbones can assume conformations ranging from order state (β‐sheet) to random coil by changing the solvent for fabrication. In contrast, the effect of solvent on the conformation of AZOPLGA23 (AZOPLGA with 23% of functionalization) is not so significant. When compared with AZOPLGA23 powder (precipitated from reaction system), the helical conformation increases for AZOPLGA23 film cast from TFA. However, the fractions of α‐helix and β‐sheet conformation in AZOPLGA23 films (cast from DMF or pyridine) are nearly identical to that of AZOPLGA23 power. Moreover, even though the polymer backbones are random coil in AZOPLGA56 films when cast from TFA, some locally ordered domain can be observed. Lastly, the effect of the azo content appears to play a dominant role over the effect of solvents in directing the conformation of these polymers.  相似文献   

18.
Conformational energy calculations are presented for the head-to-head dimerized β helices for Gramicidin A transmembrane channel structures. The calculations take into account both left- and right-handed β helices, and various side-chain conformations. The energetics of the dimerization is studied by considering various docking geometries. It is concluded from these vacuum-energy calculations that the lowest energy conformation for the channel dimer is that comprised of left-handed β helices.  相似文献   

19.
20.
The conformational transition of hydrophobically end-capped poly(ethylene oxide), HP-PEO-HP [hydrophobic-poly(ethylene oxide)-hydrophobic], was studied using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) methods. Conformational transitions of HP-PEO-HP from a planar zigzag to a 7/2 helical conformation were observed as the molecular weight of the PEO main chain increased. HP-PEO-HP 1(18), with a PEO molecular weight of 1000 and 18 hydrocarbons on each end, has mainly an alpha-helical structure in poor solvents, whereas alpha and beta conformations coexist in good solvents. This means that the alpha-helical structure caused by the hydrogen bonds between the urethane linkages was broken by the high chain mobility caused by the melted adjacent chains of PEO, and instead, the beta-sheet was formed by the interaction of multiple hydrogen bonds. Another indication of hydrogen bonds breaking at increasing temperature is the transition of the N-H stretching peak in the FTIR data. HP-PEO-HP 2(18) and 4(18), which have 18 hydrocarbons on each end and PEO molecular weights of 2000 and 4000, respectively, and consist mostly of PEO, showed spherulites. This result also suggests that the PEO molecule has a 7/2 zigzag helical conformation. In contrast, HP-PEO-HP 1(18), which is composed of less PEO than HP-PEO-HP 2(18) and 4(18), did not show a spherulite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号