首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
The potential-energy surface of the first excited state of the 11-cis-retinal protonated Schiff base (PSB11) chromophore has been studied at the density functional theory (DFT) level using the time-dependent perturbation theory approach (TDDFT) in combination with Becke's three-parameter hybrid functional (B3LYP). The potential-energy curves for torsion motions around single and double bonds of the first excited state have also been studied at the coupled-cluster approximate singles and doubles (CC2) level. The corresponding potential-energy curves for the ground state have been calculated at the B3LYP DFT and second-order M?ller-Plesset (MP2) levels. The TDDFT study suggests that the electronic excitation initiates a turn of the beta-ionone ring around the C6-C7 bond. The torsion is propagating along the retinyl chain toward the cis to trans isomerization center at the C11=C12 double bond. The torsion twist of the C10-C11 single bond leads to a significant reduction in the deexcitation energy indicating that a conical intersection is being reached by an almost barrierless rotation around the C10-C11 single bond. The energy released when passing the conical intersection can assist the subsequent cis to trans isomerization of the C11=C12 double bond. The CC2 calculations also show that the torsion barrier for the twist of the retinyl C10-C11 single bond adjacent to the isomerization center almost vanishes for the excited state. Because of the reduced torsion barriers of the single bonds, the retinyl chain can easily deform in the excited state. Thus, the CC2 and TDDFT calculations suggest similar reaction pathways on the potential-energy surface of the excited state leading toward the conical intersection and resulting in a cis to trans isomerization of the retinal chromophore. According to the CC2 calculations the cis to trans isomerization mechanism does not involve any significant torsion motion of the beta-ionone ring.  相似文献   

2.
To gain information on the conformation of the 11-cis-retinylidene chromophore bound to bovine opsin, the enantiomeric pair (2a and 2b) of 11-cis-locked bicyclo[5.1.0]octyl retinal (retCPr) 2 was prepared and its conformation was investigated by NMR, geometry optimization, and CD calculations. This compound is also of interest since it contains a unique moiety in which a chiral cyclopropyl group is flanked by triene and enal chromophores, and hence would clarify the little-known chiroptical contribution of a cyclopropyl ring linked to polyene systems. NMR revealed that the seven-membered ring of retCPr adopts a twist chair conformation. The NMR-derived structure constraints were then used for optimizing the geometry of 2 with molecular mechanics and ab initio methods. This revealed that enantiomer 2a with a 11 beta,12 beta-cyclopropyl group exists as two populations of diastereomers depending on the twist around the 6-s bond; however, the sense of twist around the 12-s is positive in both rotamers. The theoretical Boltzmann-weighted CD obtained with the pi-SCF-CI-DV MO method and experimental spectra were consistent, thus suggesting that the conjugative effect of the cyclopropyl moiety is minimal. It was found that only the beta-cyclopropyl enantiomer 2a, but not the alpha-enantiomer 2b, binds to opsin. This observation, together with earlier retinal analogues incorporation results, led to the conclusion that the chromophore sinks into the N-terminal of the opsin receptor from the side of the 4-methylene and 15-aldehyde, and that the binding cleft accommodates 11-cis-retinal with a slightly positive twist around C12/C13. A reinterpretation of the previously published negative CD couplet of 11,12-dihydrorhodopsin also leads to a chromophoric C12/C13 twist conformation with the 13-Me in front as in 1b. Such a conformation for the chromophore accounts for both the observed biostereoselectivity of retCPr 2a and the observed negative couplet of 11,12-dihydro-Rh7.  相似文献   

3.
Ring-fused retinal analogs were designed to examine the hula-twist mode of the photoisomerization of the 9-cis retinylidene chromophore. Two 9-cis retinal analogs, the C11-C13 five-membered ring-fused and the C12-C14 five-membered ring-fused retinal derivatives, formed the pigments with opsin. The C11-C13 ring-fused analog was isomerized to a relaxed all-trans chromophore (lambda(max) > 400 nm) at even -269 degrees C and the Schiff base was kept protonated at 0 degrees C. The C12-C14 ring-fused analog was converted photochemically to a bathorhodopsin-like chromophore (lambda(max) = 583 nm) at -196 degrees C, which was further converted to the deprotonated Schiff base at 0 degrees C. The model-building study suggested that the analogs do not form pigments in the retinal-binding site of rhodopsin but form pigments with opsin structures, which have larger binding space generated by the movement of transmembrane helices. The molecular dynamics simulation of the isomerization of the analog chromophores provided a twisted C11-C12 double bond for the C12-C14 ring-fused analog and all relaxed double bonds with a highly twisted C10-C11 bond for the C11-C13 ring-fused analog. The structural model of the C11-C13 ring-fused analog chromophore showed a characteristic flip of the cyclohexenyl moiety toward transmembrane segments 3 and 4. The structural models suggested that hula twist is a primary process for the photoisomerization of the analog chromophores.  相似文献   

4.
We investigate the role of protein environment of rhodopsin and the intramolecular interaction of the chromophore in the cis-trans photoisomerization of rhodopsin by means of a newly developed theoretical method. We theoretically produce modified rhodopsins in which a force field of arbitrarily chosen part of the chromophore or the binding pocket of rhodopsin is altered. We compare the equilibrium conformation of the chromophore and the energy stored in the chromophore of modified rhodopsins with those of native rhodopsins. This method is called site-specific force field switch (SFS). We show that this method is most successfully applied to the torsion potential of rhodopsin. Namely, by reducing the twisting force constant of the C11=C12 of 11-cis retinal chromophore of rhodopsin to zero, we found that the equilibrium value of the twisting angle of the C11=C12 bond is twisted in the negative direction down to about -80 degrees. The relaxation energy obtained by this change amounts to an order of 10 kcal/mol. In the case that the twisting force constant of the other double bond is reduced to zero, no such large twisting of the bond happens. From these results we conclude that a certain torsion potential is applied specifically to the C11=C12 bond of the chromophore in the ground state of rhodopsin. This torsion potential facilitates the bond-specific cis-trans photoisomerization of rhodopsin. This kind of the mechanism is consistent with our torsion model proposed by us more than a quarter of century ago. The origin of the torsion potential is analyzed in detail on the basis of the chromophore structure and protein conformation, by applying the SFS method extensively.  相似文献   

5.
The low-lying singlet states (i.e. S0, S1, and S2) of the chromophore of rhodopsin, the protonated Schiff base of 11-cis-retinal (PSB11), and of its all-trans photoproduct have been studied in isolated conditions by using ab initio multiconfigurational second-order perturbation theory. The computed spectroscopic features include the vertical excitation, the band origin, and the fluorescence maximum of both isomers. On the basis of the S0-->S1 vertical excitation, the gas-phase absorption maximum of PSB11 is predicted to be 545 nm (2.28 eV). Thus, the predicted absorption maximum appears to be closer to that of the rhodopsin pigment (2.48 eV) and considerably red-shifted with respect to that measured in solution (2.82 eV in methanol). In addition, the absorption maxima associated with the blue, green, and red cone visual pigments are tentatively rationalized in terms of the spectral changes computed for PSB11 structures featuring differently twisted beta-ionone rings. More specifically, a blue-shifted absorption maximum is explained in terms of a large twisting of the beta-ionone ring (with respect to the main conjugated chain) in the visual S-cone (blue) pigment chromophore. In contrast, the chromophore of the visual L-cone (red) pigment is expected to have a nearly coplanar beta-ionone ring yielding a six double bond fully conjugated framework. Finally, the M-cone (green) chromophore is expected to feature a twisting angle between 10 and 60 degrees. The spectroscopic effects of the alkyl substituents on the PSB11 spectroscopic properties have also been investigated. It is found that they have a not negligible stabilizing effect on the S1-S0 energy gap (and, thus, cause a red shift of the absorption maximum) only when the double bond of the beta-ionone ring conjugates significantly with the rest of the conjugated chain.  相似文献   

6.
The quantum yields of bleaching for two artificial pigments, bovine opsin combined with (3R)-3-hydroxy retinal or (3R,S)-3-methoxy retinal, were determined in comparison to the value for regenerated bovine rhodopsin. Regeneration of the visual pigments was performed by incubation of 3-[(3-Cholamidopropyl)-dimethylammonio]-2-hydroxy-1- propanesulfonate (CHAPSO)-solubilized opsin with the 11-cis isomers of retinal and the respective retinal derivatives. The extinction coefficients of the pigments in CHAPSO were determined to 35,000 M-1 cm-1 (native rhodopsin), 35,300 M-1 cm-1 (regenerated rhodopsin) and 34,500 M-1 cm-1 (3-OH retinal opsin). With respect to rhodopsin (lambda max: 500 nm), the pigments carrying the substituted chromophores exhibit blue shifted absorbance maxima (3-hydroxy and 3-methoxy retinal opsin: 488 nm). In parallel experiments under absolutely identical conditions we find related to the value of CHAPSO solubilized rhodopsin (identical to 1) a quantum efficiency of bleaching for the 3-hydroxy pigment of 1.2.  相似文献   

7.
In this paper we use ab initio multireference M?ller-Plesset second-order perturbation theory computations to map the first five singlet states (S(0), S(1), S(2), S(3), and S(4)) along the initial part of the photoisomerization coordinate for the isolated rhodopsin chromophore model 4-cis-gamma-methylnona-2,4,6,8-tetraeniminium cation. We show that this information not only provides an explanation for the spectral features associated to the chromophore in solution but also, subject to a tentative hypothesis on the effect of the protein cavity, may be employed to explain/assign the ultrafast near-IR excited-state absorption, stimulated emission, and transient excited-state absorption bands observed in rhodopsin proteins (e.g. rhodopsin and bacteriorhodopsin). We also show that the results of vibrational frequency computations reveal a general structure for the first (S(1)) excited-state energy surface of PSBs that is consistent with the existence of the coherent oscillatory motions observed both in solution and in bacteriorhodopsin.  相似文献   

8.
CASPT2//CASSCF/6-31G photochemical reaction path computations for two 4-cis-nona-2,4,6,8-tetraeniminium cation derivatives, with the 4-cis double bond embedded in a seven- and eight-member ring, are carried out to model the reactivity of the corresponding ring-locked retinal chromophores. The comparison of the excited state branches of the two reaction paths with that of the native chromophore, is used to unveil the factors responsible for the remarkably short (60 fs) excited state (S(1)) lifetime observed when an artificial rhodopsin containing an eight member ring-locked retinal is photoexcited. Indeed, it is shown that the strain imposed by the eight-member ring on the chromophore backbone leads to a dramatic change in the shape of the S(1) energy surface. Our models are also used to investigate the nature of the primary photoproducts observed in different artificial rhodopsins. It is seen that only the eight member ring-locked retinal model can access a shallow energy minimum on the ground state. This result implies that the primary, photorhodopsin-like, transient observed in artificial rhodopsins could correspond to a shallow excited state minimum. Similarly, the second, bathorhodopsin-like, transient species could be assigned to a ground state structure displaying a nearly all-trans conformation.  相似文献   

9.
The regeneration of bovine rhodopsin from its apoprotein opsin and the prosthetic group 11-cis retinal involves the formation of a retinylidene Schiff base with the epsilon-amino group of the active lysine residue of opsin. The pH dependence of a Schiff base formation in solution follows a typical bell-shaped profile because of the pH dependence of the formation and the following dehydration of a 1-aminoethanol intermediate. Unexpectedly, however, we find that the formation of rhodopsin from 11-cis retinal and opsin does not depend on pH over a wide pH range. These results are interpreted by the Matsumoto and Yoshizawa (Nature 258 [1975] 523) model of rhodopsin regeneration in which the 11-cis retinal chromophore binds first to opsin through the beta-ionone ring, followed by the slow formation of the retinylidene Schiff base in a restricted space. We find the second-order rate constant of the rhodopsin formation is 6100+/-300 mol(-1) s(-1) at 25 degrees C over the pH range 5-10. The second-order rate constant is much greater than that of a model Schiff base in solution by a factor of more than 10(7). A previous report by Pajares and Rando (J Biol Chem 264 [1989] 6804) suggests that the lysyl epsilon-NH(2) group of opsin is protonated when the beta-ionone ring binding site is unoccupied. The acceleration of the Schiff base formation in rhodopsin is explained by stabilization of the deprotonated form of the lysyl epsilon-NH(2) group which might be induced when the beta-ionone ring binding site is occupied through the noncovalent binding of 11-cis retinal to opsin at the initial stage of rhodopsin regeneration, followed by the proximity and orientation effect rendered by the formation of noncovalent 11-cis retinal-opsin complex.  相似文献   

10.
The solid-state E/Z-photoisomerization of 1,2-dibenzoylethene   总被引:1,自引:0,他引:1  
The E/Z-photoisomerization of trans-1,2-dibenzoylethene (DBE) in the confinement of its crystal lattice proceeds readily, but not as a single crystal to single crystal process which was claimed previously by others. This model for the Z-->E isomerization at the 11-12 double bond of the retinal moiety in the crystal-like confinement of rhodopsin was investigated in view of the fact that the precise geometric features are crucial for a better understanding of the postulated twist mechanism. Atomic force microscopy (AFM) monitored long-range anisotropic molecular movements if trans-DBE was photoisomerized, but cis-DBE was unreactive even at the extreme sensitivity of AFM. The crystal lattices of both isomers cannot accommodate a rotational mechanism but at best the twist mechanism with the large groups not leaving their planes. The unidirectional solid-state photochemistry derives from the crystal packing of cis-DBE which exhibits severe 3D-interlocking. Thus, trans-DBE molecules are not formed in the cis-lattice, because their moving away would be prohibited. Conversely, photochemically formed cis-DBE molecules escape the foreign trans-DBE lattice easily along its glide planes, as is experimentally observed by AFM. These findings are reminiscent of the escape of 11-trans-retinal from the rhodopsin array in the vision cascade.  相似文献   

11.
We have obtained carbon-carbon bond length data for the functional retinylidene chromophore of rhodopsin, with a spatial resolution of 3 pm. The very high resolution was obtained by performing double-quantum solid-state NMR on a set of noncrystalline isotopically labelled bovine rhodopsin samples. We detected localized perturbations of the carbon-carbon bond lengths of the retinylidene chromophore. The observations are consistent with a model in which the positive charge of the protonated Schiff base penetrates into the polyene chain and partially concentrates around the C13 position. This coincides with the proximity of a water molecule located between the glutamate-181 and serine-186 residues of the second extracellular loop, which is folded back into the transmembrane region. These measurements support the hypothesis that the polar residues of the second extracellular loop and the associated water molecule assist the rapid selective photoisomerization of the retinylidene chromophore by stabilizing a partial positive charge in the center of the polyene chain.  相似文献   

12.
Time-dependent density functional theory (TDDFT) calculations on the photoabsorption process of the 11-cis retinal protonated Schiff base (PSB) chromophore show that the Franck-Condon relaxation of the first excited state of the chromophore involves a torsional twist motion of the beta-ionone ring relative to the conjugated retinyl chain. For the ground state, the beta-ionone ring and the retinyl chain of the free retinal PSB chromophore form a -40 degrees dihedral angle as compared to -94 degrees for the first excited state. The double bonds of the retinal are shorter for the fully optimized structure of the excited state than for the ground state suggesting a higher cis-trans isomerization barrier for the excited state than for the ground state. According to the present TDDFT calculations, the excitation of the retinal PSB chromophore does not primarily lead to a reaction along the cis-trans torsional coordinate at the C11-C12 bond. The activation of the isomerization center seems to occur at a later stage of the photo reaction. The results obtained at the TDDFT level are supported by second-order M?ller-Plesset (MP2) and approximate singles and doubles-coupled cluster (CC2) calculations on retinal chromophore models; the MP2 and CC2 calculations yield for them qualitatively the same ground state and excited-state structures as obtained in the density functional theory and TDDFT calculations.  相似文献   

13.
Ab initio excited-state molecular dynamics calculations have been performed to study the effect of methyl substitution and chromophore distortion on the photoreaction of different four-double-bond retinal model chromophores. Randomly distributed starting geometries were generated by zero-point energy sampling; after Franck-Condon excitation the reaction was followed on the S1 surface. For determining the photoproduct and its configuration, a simplified approach--torsion angle following--is discussed and applied. We find that chromophore distortion significantly affects the outcome of the photoreaction: with dihedral angles taken from the rhodopsin-embedded 11-cis-retinal chromophore, the reaction rate of the model chromophore is increased by a factor of 3 compared to that of the relaxed chromophore. Also, the reaction proceeds in a completely stereoselective manner involving only the cis double bond and with a minimum quantum yield of 72%. Bond torsion is more effective than methyl substitution for fast and selective photochemistry, which is in agreement with photophysical measurements on rhodopsin analogues. We conclude that apart from the geometric distortions caused by the protein pocket it is not necessary to postulate other specific interactions between the protein and the chromophore to effect the selective and ultrafast photoreaction in rhodopsin.  相似文献   

14.
Spectral shifts of rhodopsin, which are related to variations of the electron distribution in 11‐cis‐retinal, are investigated here using the method of deformed atoms in molecules. We found that systems carrying the M207R and S186W mutations display large perturbations of the π‐conjugated system with respect to wild‐type rhodopsins. These changes agree with the predicted behavior of the bond length alternation (BLA) and the blue shifts of vertical excitation energies of these systems. The effect of the planarity of the central and Schiff‐base regions of retinal chain on the electronic structure of the chromophore is also investigated. By establishing nonlinear polynomial relations between BLA, chain distortions, and vertical excitation energies, we are also able to provide a semiquantitative approach for the understanding of the mechanisms regulating spectral shifts in rhodopsin and its mutants. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bR(S68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding pi-orbital to the anti-bonding pi*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150-1250 and 900-1000 cm(-1), respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700-900 fs until the chromophore isomerizes to the cis-C13 = C14 conformation. The frequency of the C = C stretching mode was modulated by the torsion mode of the C13 = C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C = C bond length with about 0.01 angstroms accuracy during the torsion motion around the double bond with 1-fs time resolution.  相似文献   

16.
We considered a series of model systems for treating the photoabsorption of the 11-cis retinal chromophore in the protonated Schiff-base form in vacuum, solutions, and the protein environment. A high computational level, including the quantum mechanical-molecular mechanical (QM/MM) approach for solution and protein was utilized in simulations. The S0-S1 excitation energies in quantum subsystems were evaluated by means of an augmented version of the multiconfigurational quasidegenerate perturbation theory (aug-MCQDPT2) with the ground-state geometry parameters optimized in the density functional theory PBE0/cc-pVDZ approximation. The computed positions of absorption bands lambdamax, 599(g), 448(s), and 515(p) nm for the gas phase, solution, and protein, respectively, are in excellent agreement with the corresponding experimental data, 610(g), 445(s), and 500(p) nm. Such consistency provides a support for the formulated qualitative conclusions on the role of the chromophore geometry, environmental electrostatic field, and the counterion in different media. An essentially nonplanar geometry conformation of the chromophore group in the region of the C14-C15 bond was obtained for the protein, in particular, owing to the presence of the neighboring charged amino acid residue Glu181. Nonplanarity of the C14-C15 bond region along with the influence of the negatively charged counterions Glu181 and Glu113 are found to be important to reproduce the spectroscopic features of retinal chromophore inside the Rh cavity. Furthermore, the protein field is responsible for the largest bond-order decrease at the C11-C12 double bond upon excitation, which may be the reason for the 11-cis photoisomerization specificity.  相似文献   

17.
The visual pigment rhodopsin (bovine) is a 40 kDa protein consisting of 348 amino acids, and is a prototypical member of the subfamily A of G protein-coupled receptors (GPCRs). This remarkably efficient light-activated protein (quantum yield = 0.67) binds the chromophore 11-cis-retinal covalently by attachment to Lys296 through a protonated Schiff base. The 11-cis geometry of the retinylidene chromophore keeps the partially active opsin protein locked in its inactive state (inverse agonist). Several retinal analogs with defined configurations and stereochemistry have been incorporated into the apoprotein to give rhodopsin analogs. These incorporation results along with the spectroscopic properties of the rhodopsin analogs clarify the mode of entry of the chromophore into the apoprotein and the biologically relevant conformation of the chromophore in the rhodopsin binding site. In addition, difference UV, CD, and photoaffinity labeling studies with a 3-diazo-4-oxo analog of 11-cis-retinal have been used to chart the movement of the retinylidene chromophore through the various intermediate stages of visual transduction.  相似文献   

18.
Six optical isomers of 2-(4-diphenylmethyl-1-piperazinyl)ethyl 5-(4,6-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yl)-1,4-dihydro-2, 6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylate dihydrochloride (NIP-101, 1.2HCl.2H2O), a potent calcium antagonist, were successfully prepared by using optically active (2R,4R)-(-)- and (2S,4S)-(+)-2,4-pentanediols, and cis-2,4-pentanediol and optically active (S)-(+)-2-methoxy-2-phenylethanol. Their proton nuclear magnetic resonance investigations demonstrate that the 1,3,2-dioxaphosphorinane group is conformationally constrained around the C-P bond. Calcium-antagonistic and hypotensive activities of the optical isomers were examined and found to depend mainly on the absolute configuration at a stereogenic center in the 1,4-dihydropyridine ring rather than the configuration of the 1,3,2-dioxaphosphorinane moiety.  相似文献   

19.
Rhodopsin, the pigment responsible for vision in animals, insect and fish is a typical G protein (guanyl-nucleotide binding protein) consisting of seven transmembrane alpha helices and their interconnecting extramembrane loops. In the case of bovine rhodopsin, the best studied of the visual pigments, the chromophore is 11-cis retinal attached to the terminal amino group of Lys296 through a protonated Schiff base linkage. Photoaffinity labeling with a 3-diazo-4-oxo-retinoid shows that C-3 of the ionone ring moiety is close to Trp265 in helix F (VI) in dark inactivated rhodopsin. Irradiation causes a cis to trans isomerization of the 11-cis double bond giving rise to the highly strained intermediate bathorhodopsin. This undergoes a series of thermal relaxation through lumi-, meta-I and meta-II intermediates after which the retinal chromophore is expelled from the opsin binding pocket. Photoaffinity labeling performed with 3-diazo-4-oxoretinal at -196 degrees C for batho-, -80 degrees C for lumi-, -40 degrees C for meta-I, and 0 degrees C for meta-II rhodopsin showed that in bathorhodopsin the ring is still close to Trp265. However, in lumi-, meta-I and meta-II intermediates crosslinking occurs unexpectedly at A169 in helix D (IV). This shows that large movements in the helical arrangements and a flip over of the ring moiety accompanies the transduction (or bleaching) process. These changes in retinal/opsin interactions are necessarily accompanied by movements of the extramembrane loops, which in turn lead to activation of the G protein residing in the cytoplasmic side. Of the numerous G protein coupled receptors, this is the first time that the outline of transduction pathway has been clarified.  相似文献   

20.
One-dimensional potential energy curves for the isomerization of protonated Schiff base of retinal (PSBR) in bacteriorhodopsin (bR), i.e., isomerization from all-trans- to 13-cis-forms, have been calculated by means of time-dependent density functional theory (TD-DFT) calculations, in order to elucidate the mechanism of initial step in photo-absorption. The transition state of the isomerization in the first excited state is located at theta(13-14)=58 degrees , where theta(13-14) means twist angle around the C(13)=C(14) double bond of PSBR The potential barrier is formed by the avoided crossing between S(1) (B(u)-like) and S(2) (A(g)-like) states. The mechanism of the isomerization was discussed on the basis of theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号