首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression mechanism of permselectivity through a gramicidin A (gA) channel between two aqueous phases (W1 and W2) was investigated. When the concentration of CsCl or CsBr in W1 was equivalent to that in W2, the single‐channel current was proportional to the absolute value of the applied membrane potential. Although the single‐channel current linearly increased with increasing electrolyte concentration in W1 and W2 until about 0.1 M (mol dm?3), it began to level off around 0.1 M, indicating that ion permeation across the channel pore is the rate‐determining step and that the saturation of the transporting ion within the channel pore provokes the leveling off. In the case of asymmetric composition of the electrolyte in W1 and W2, the monovalent cation and the counter anion were transported in the opposite direction through the gA channel pore or the bilayer lipid membrane around the gA channel. Finally, the experimental data was fitted using the Goldman‐Hodgkin‐Katz equation based on the relationship between the membrane potential and the single‐channel current to define the ratio of the diffusion coefficients of Cs+, Cl?, and Br? as 5.7 : 1.0 : 0.26.  相似文献   

2.
Gramicidin D was incorporated in a biomimetic membrane consisting of a lipid bilayer tethered to a mercury electrode via a hydrophilic spacer, and its behavior was investigated in aqueous 0.1 M KCl by potential-step chronocoulometry and electrochemical impedance spectroscopy. The impedance spectra, recorded from 0.1 to 1 x 10(5) Hz over a potential range of 0.7 V, were fitted to a series of RC meshes, which were related to the different substructural elements of the biomimetic membrane. These impedance spectra were compared with those obtained by incorporating valinomycin, under otherwise identical conditions. The potential dependence of the stationary currents reported on bilayer lipid membranes by Bamberg and L?uger (Bamberg, E.; L?uger, P. J. Membrane Biol. 1973, 11, 177-194) as well as those extracted from potential-step chronocoulometric measurements was interpreted by relating the increase in gramicidin dimerization to a progressive increase in single-file K+ flux along the dimeric channels. An analogous approach was adopted in explaining the difference between the impedance spectra obtained with gramicidin D and those obtained with valinomycin. It is concluded that gramicidin has a low tendency to form dimers in the absence of ionic flux.  相似文献   

3.
Three unimolecular peptide channels have been designed and prepared by using the β‐helical conformation of gramicidin A (gA). The new peptides bear one to three NH3+ groups at the N‐end and one to three CO2? groups at the C‐end. These zwitterionic peptides were inserted into lipid bilayers in an orientation‐selective manner. Conductance experiments on planar lipid bilayers showed that this orientation bias could lead to observable directional K+ transport under multi‐channel conditions. This directional transport behavior can further cause the generation of a current across a planar bilayer without applying a voltage. More importantly, in vesicles with identical external and internal KCl concentrations, the channels can pump K+ across the lipid bilayer and cause a membrane potential.  相似文献   

4.
Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We recently reported the possibility to detect chemical modifications on individual molecules by monitoring a change in the single ion channel conductance of derivatives of gramicidin A (gA) upon reaction with analytes in solution. These peptide-based nanosensors detect reaction-induced changes in the charge of gA derivatives that were engineered to carry specific functional groups near their C-terminus.1 Here, we discuss five key design parameters to optimize the performance of such chemomodulated ion channel sensors. In order to realize an effective sensor that measures changes in charge of groups attached to the C-terminus of a gA pore, the following conditions should be fulfilled: (1) the change in charge should occur as close to the entrance of the pore as possible; (2) the charge before and after reaction should be well-defined within the operational pH range; (3) the ionic strength of the recording buffer should be as low as possible while maintaining a detectable flow of ions through the pore; (4) the applied transmembrane voltage should be as high as possible while maintaining a stable membrane; (5) the lipids in the supporting membrane should either be zwitterionic or charged differently than the derivative of gA. We show that under the condition of high applied transmembrane potential (>100 mV) and low ionic strength of the recording buffer (< or =0.10 M), a change in charge at the entrance of the pore is the dominant requirement to distinguish between two differently charged derivatives of gA; the conductance of the heterodimeric gA pore reported here does not depend on a difference in charge at the exit of the pore. We provide a simple explanation for this asymmetric characteristic based on charge-induced local changes in the concentration of cations near the lipid bilayer membrane. Charge-based ion channel sensors offer tremendous potential for ultrasensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.  相似文献   

5.
A tethered bilayer lipid membrane (tBLM) was fabricated on a gold electrode using 1,2-dipalmitoyl-sn-glycero-phosphothioethanol as a tethering lipid and the membrane fractions of Saccharomyces pombe yeast cells to deposit the upper leaflet. The membrane fractions were characterized using transmission electron microscopy and dynamic light scattering and found to be similar in size to small unilamellar vesicles of synthetic lipids. The dynamics of membrane-fraction deposition and rupture on the tethering-lipid layer were measured using quartz crystal microgravimetry. The electrochemical properties of the resulting tBLM were characterized using electrical impedance spectroscopy and cyclic voltammetry. The tBLM's electrical resistance was greater than 1 MOmegacm(2), suggesting a defect-free membrane. The suitability of tBLM produced using membrane fractions for measuring ion-channel activities was shown by a decrease in membrane resistance from 1.6 to 0.43 MOmegacm(2) following addition of gramicidin. The use of membrane fractions to form high-quality tBLM on gold electrodes suggests a new approach to characterize membrane proteins, in which the upper leaflet of the tBLM is deposited, and overexpressed membrane proteins are incorporated, in a single step. This approach would be especially useful for proteins whose activity is lost or altered during extraction, purification, and reconstitution, or whose activities are strongly influenced by the lipid composition of the bilayer.  相似文献   

6.
We report on the investigations of the formation of the tethered lipid bilayer by vesicle deposition on amine-functionalized surfaces. The tethered bilayer was created by the deposition of egg-PC vesicles containing 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly-(ethyleneglycol)-N-hydroxysuccinimide as anchoring molecules on an amine-coated surface. This approach is an easy route for the formation of a biomimetic-supported membrane. A Doelhert experimental design was applied to determine the conditions leading to the formation of a continuous and defect-free tethered bilayer on different surfaces (gold and glass). Doehlert designs allow modeling of the experimental responses by second-order polynomial equations as a function of experimental factors. Four factors expected to influence bilayer formation were studied: the lipid concentration in the vesicle suspension, the mass percentage of anchoring molecules in the vesicles, the contact time between the vesicles and the surface, and the resting time of the membrane after buffer rinse. The optimization of the membrane preparation parameters was achieved by monitoring lipid assembly formation using surface plasmon resonance spectroscopy on gold and by fluorescence recovery after photobleaching on glass. Three characteristic responses were systematically measured: the bilayer thickness, the lipid diffusion coefficient, and the lipid mobile fraction. The simultaneous inspection of the three characteristics revealed that a restricted experimental domain leads to properties that are in accordance with a bilayer presence. The factors of this domain are a lipid concentration from 0.1 to 1 mg/mL, 4-8% of anchoring molecules in the vesicles, 1-4 h of contact time between vesicles and surface, and 21-24 h of resting time after buffer rinse. Under these conditions, a membrane having a lipid mass per surface between 545 +/- 5 and 590 +/- 10 ng/cm2, a diffusion coefficient of between 2.5 +/- 0.3 x 10(-8) and 3.60 +/- 0.5 x 10(-8) cm2/s, and a mobile fraction between 94 +/- 2 and 99 +/- 1% was formed. These findings were confirmed by atomic force microscopy observations, which showed the presence of a continuous and homogeneous bilayer in the determined experimental domain. This formation procedure presents many advantages; it provides an easily obtainable biomimetic membrane model for proteins studies and offers a versatile tethered bilayer because it can be adapted easily to various types of supports.  相似文献   

7.
We recently introduced a method to tether intact phospholipid vesicles onto a fluid supported lipid bilayer using DNA hybridization (Yoshina-Ishii, C.; Miller, G. P.; Kraft, M. L; Kool, E. T.; Boxer, S. G. J. Am. Chem. Soc. 2005, 127, 1356-1357). Once tethered, the vesicles can diffuse in two dimensions parallel to the supported membrane surface. The average diffusion coefficient, D, is typically 0.2 microm(2)/s; this is 3-5 times smaller than for individual lipid or DNA-lipid conjugate diffusion in supported bilayers. In this article, we investigate the origin of this difference in the diffusive dynamics of tethered vesicles by single-particle tracking under collision-free conditions. D is insensitive to tethered vesicle size from 30 to 200 nm, as well as a 3-fold change in the viscosity of the bulk medium. The addition of macromolecules such as poly(ethylene glycol) reversibly stops the motion of tethered vesicles without causing the exchange of lipids between the tethered vesicle and supported bilayer. This is explained as a depletion effect at the interface between tethered vesicles and the supported bilayer. Ca ions lead to transient vesicle-vesicle interactions when tethered vesicles contain negatively charged lipids, and vesicle diffusion is greatly reduced upon Ca ion addition when negatively charged lipids are present both in the supported bilayer and tethered vesicles. Both effects are interesting in their own right, and they also suggest that tethered vesicle-supported bilayer interactions are possible; this may be the origin of the reduction in D for tethered vesicles. In addition, the effects of surface defects that reversibly trap diffusing vesicles are modeled by Monte Carlo simulations. This shows that a significant reduction in D can be observed while maintaining normal diffusion behavior on the time scale of our experiments.  相似文献   

8.
Planar supported lipid bilayers (PSLBs) have been widely studied as biomembrane models and biosensor scaffolds. For technological applications, a major limitation of PSLBs composed of fluid lipids is that the bilayer structure is readily disrupted when exposed to chemical, mechanical, and thermal stresses. A number of asymmetric supported bilayer structures, such as the hybrid bilayer membrane (HBM) and the tethered bilayer lipid membrane (tBLM), have been created as an alternative to symmetric PSLBs. In both HBMs and tBLMs, the inner monolayer is covalently attached to the substrate while the outer monolayer is typically composed of a fluid lipid. Here we address if cross-linking polymerization of the lipids in the outer monolayer of an asymmetric supported bilayer can achieve the high degree of stability observed previously for symmetric PSLBs in which both monolayers are cross-linked [E.E. Ross, L.J. Rozanski, T. Spratt, S.C. Liu, D.F. O'Brien, S.S. Saavedra, Langmuir 19 (2003) 1752]. To explore this issue, HBMs composed of an outer monolayer of a cross-linkable lipid, bis-sorbylphosphatidylcholine (bis-SorbPC), and an inner SAM were prepared and characterized. Several experimental conditions were varied: vesicle fusion time, polymerization method, and polymerization time and temperature. Under most conditions, bis-SorbPC cross-linking stabilized the HBM such that its bilayer structure was largely preserved after drying; however these films invariably contained sub-micron scale defects that exposed the hydrophobic core of the HBM. The defects appear to be caused by desorption of low molecular weight oligomers when the film is removed from water, rinsed, and dried. In contrast, poly(bis-SorbPC) PSLBs prepared under similar conditions by Ross et al. were nearly defect free. This comparison shows that formation of a cross-linked network in the outer leaflet of an asymmetric supported bilayer is insufficient to prevent lipid desorption; inter-leaflet covalent linking appears to be necessary to create supported poly(lipid) assemblies that are impervious to repeated drying and rehydration. The difference in stability is attributed to inter-leaflet cross-linking between monolayers which can form in symmetric bis-SorbPC PSLBs.  相似文献   

9.
A systematic study of the influence of the packing density of proteins on their activity is performed with cytochrome c oxidase (CcO) from R. sphaeroides as an example. The protein was incorporated into a protein-tethered bilayer lipid membrane and CcO was genetically engineered with a histidine-tag, attached to Subunit II, and then tethered by an interaction with functionalized thiol compounds bound to a gold electrode. The packing density was varied by diluting the functionalized thiol with a nonfunctionalized thiol that does not bind to the enzyme. After attaching the CcO to the gold surface, a lipid bilayer was formed to incorporate the tethered proteins. The reconstituted protein-lipid bilayer was characterized by surface enhanced infrared reflection absorption spectroscopy (SEIRAS), electrochemical impedance spectroscopy, surface plasmon resonance, and atomic force microscopy. The activity of the proteins within the reconstituted bilayer was probed by direct electrochemical electron injection and was shown to be very sensitive to the packing density of protein molecules. At low surface density of CcO, the bilayer did not effectively form, and protein aggregates were observed, whereas at very high surface density, very little lipid is able to intrude between the closely packed proteins. In both of these cases, redox activity, measured by the efficiency to accept electrons, is low. Redox activity of the enzyme is preserved in the biomimetic structure but only at a moderate surface coverage in which a continuous lipid bilayer is present and the proteins are not forced to aggregate. Electrostatic and other interaction forces between protein molecules are held responsible for these effects.  相似文献   

10.
D ‐/L ‐Peptides such as gramicidin A (gA) adopt unique dimeric βhelical structures of different topologies. To overcome their conformational promiscuity and enrich individual components, a dynamic combinatorial approach assisted by thiol tags was developed. This method led to identification of the preferential formation of antiparallel dimers under a broad range of conditions, which was independent of peptide side‐chain polarity. Exclusive formation of an antiparallel cyclic dimer was achieved in the presence of cesium ions.  相似文献   

11.
The recently developed multiscale coarse-graining (MS-CG) method (Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469; J. Chem. Phys. 2005, 123, 134105) is used to build a mixed all-atom and coarse-grained (AA-CG) model of the gramicidin A (gA) ion channel embedded in a dimyristoylphosphatidylcholine (DMPC) lipid bilayer and water environment. In this model, the gA peptide was described in full atomistic detail, while the lipid and water molecules were described using coarse-grained representations. The atom-CG and CG-CG interactions in the mixed AA-CG model were determined using the MS-CG method. Molecular dynamics (MD) simulations were performed using the resulting AA-CG model. The results from simulations of the AA-CG model compare very favorably to those from all-atom MD simulations of the entire system. Since the MS-CG method employs a general and systematic approach to obtain effective interactions from the underlying all-atom models, the present approach to rigorously develop mixed AA-CG models has the potential to be extended to many other systems.  相似文献   

12.
The insulating properties of self-assembled thiolipid monolayers and tethered lipid bilayers on polycrystalline gold electrodes were studied by means of cyclic voltammetry (CV). These films were formed by two-step self-assembly processes. Electrochemical measurements of the heterogeneous electron transfer rate constant of different redox couples such as potassium ferrocyanide (K(4)[Fe(CN)(6)]) and dopamine (DP) were used to examine the molecular integrity and structural defects and pinholes within the monolayers. We demonstrate by means of cyclic voltammetry that the bilayer lipid membranes tethered to the gold surface are blocking, stable, yet retaining their dynamic properties and can be used as a model of the cell membrane.  相似文献   

13.
Membrane-bound ion channels are promising biological receptors since they allow for the stochastic detection of analytes at high sensitivity. For stochastic sensing, it is necessary to measure the ion currents associated with single ion channel opening and closing events. However, this calls for stability, high reproducibility, and long lifetimes. A critical issue to overcome is the low stability of the ion channel environment, that is, the bilayer membrane. A promising technique to surmount this is to connect the lower part of the membrane to a surface forming a tethered bilayer membrane. By reconstituting the synthetic ion channel, gramicidin A, into a tethered bilayer as part of a microchip design, we have been able to record the activity of single ion channels. The observed activity was compared with that obtained by a conventional electrophysiology method, tip dipping, to confirm its authenticity. These findings allow for the construction of stable biosensors based on ion channels and provide a novel technique for the characterization of ion channel activity.  相似文献   

14.
The dimerization of gramicidin, a 15-residue membrane peptide, in solution can be viewed as a model for protein-protein interactions. We reported previously that the dimer can be observed when electrosprayed from organic solvents and that the abundances of the dimer depends on the dielectric constant of the solvent. Here, we report an effort to determine an affinity constant for the dimerization of gramicidin by using gas-phase abundance. Two issues affecting the determination are the electrospray-induced dissociation of the dimer and discrimination in the electrospray of the dimer compared with the monomer. Other methods developed for the purpose of determining affinity from mass spectral abundance do not address the dissociation of the complex in the gas phase or can not be applied for cases of low affinity constant, K(a). We present a mathematical model that uses the ratio of the signal intensities of the dimer and the monomer during a titration. The model also incorporates the dissociation and an electrospray ionization-response factor of the dimer for extracting the affinity constant for the dimerization of gramicidin. The dimerization constants from the new method agree within a factor of two with values reported in the literature.  相似文献   

15.
The kinetics of channel formation by the polyene-like antibiotic monazomycin, both in a bilayer lipid membrane (BLM) and in a tethered BLM (tBLM), and by the peptide melittin in a tBLM, is investigated. Stepping the applied potential from a value at which channels are not formed to one at which they are formed yields current vs time curves that are sigmoidal on a BLM, while they show a maximum on a tBLM; in the latter case, sigmoidal curves are obtained by plotting the charge against time. These curves are interpreted on the basis of a general kinetic model, which accounts for the potential-dependent penetration of adsorbed monomeric molecules into the lipid bilayer, followed by their aggregation with channel formation by a mechanism of nucleation and growth. In the case of monazomycin, which is present in the solution in the form of relatively hydrophilic clusters and is adsorbed as such on top of the lipid bilayer, penetration into the bilayer following a potential jump is assumed to be preceded by a potential-independent disaggregation of the adsorbed clusters into adsorbed monomers.  相似文献   

16.
We recently introduced two approaches for tethering planar lipid bilayers as membrane patches to either a supported lipid bilayer or DNA-functionalized surface using DNA hybridization (Chung, M.; Lowe, R. D.; Chan, Y-H. M.; Ganesan, P. V.; Boxer, S. G. J. Struct. Biol.2009, 168, 190-9). When mobile DNA tethers are used, the tethered bilayer patches become unstable, while they are stable if the tethers are fixed on the surface. Because the mobile tethers between a patch and a supported lipid bilayer offer a particularly interesting architecture for studying the dynamics of membrane-membrane interactions, we have investigated the sources of instability, focusing on membrane composition. The most stable patches were made with a mixture of saturated lipids and cholesterol, suggesting an important role for membrane stiffness. Other factors such as the effect of tether length, lateral mobility, and patch membrane edge were also investigated. On the basis of these results, a model for the mechanism of patch destruction is developed.  相似文献   

17.
The results described herein support a mechanistic hypothesis for how guanidine-rich transporters attached to small cargos (MW ca. <3000) can migrate across the lipid membrane of a cell and directly enter the cytosol. Arginine oligomers are found to partition almost completely into the aqueous layer of a water-octanol bilayer. However, when the same partitioning experiment is conducted in the presence of sodium laurate, a representative negatively charged membrane constituent, the arginine oligomer partitions almost completely (>95%) into the octanol layer. In contrast, ornithine oligomers partition almost exclusively into the water layer with and without added sodium laurate. The different partitioning between guanidinium-rich and ammonium-rich oligomers in the presence of sodium laurate is consistent with the ability of the former to form a bidentate hydrogen bonded ion pair. Mono- and dimethylated arginine oligomers, which like ornithine can only efficiently form monodentate hydrogen bonds, were prepared and found to exhibit poor cellular uptake. Ion pair formation converts a once water-soluble agent to a lipid-soluble agent, thereby reducing the energetic penalty for passage of guanidine-rich transporters through the lipid bilayer. Uptake of guanidine-rich transporters is known to be an energy-dependent process, and this requirement for cellular ATP is now rationalized by the inhibition of guanidine-rich transporter uptake in the presence of agents that reduce the membrane potential. Specifically, incubation of cells in buffers with high potassium ion concentrations or pretreatment of cells with gramicidin A reduces the cellular uptake of Fl-aca-arg8-CONH2 by >90%. Furthermore, the reciprocal experiment of hyperpolarizing the cell with valinomycin increased uptake by >1.5 times. In summary, we propose that the water-soluble, positively charged guanidinium headgroups of the transporter form bidentate hydrogen bonds with H-bond acceptor functionality on the cell surface. The resultant ion pair complexes partition into the lipid bilayer and migrate across at a rate related to the membrane potential. The complex dissociates on the inner leaf of the membrane, and the transporter enters the cytosol. This hypothesis does not preclude uptake by other mechanisms, including endocytosis, which is likely to dominate with large cargos.  相似文献   

18.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

19.
We describe the use of H/D amide exchange and electrospray ionization mass spectrometry to study, in organic solvents, the pentadecapeptide gramicidin as a model for protein self association. In methanol-OD, all active H’s in the peptide exchange for D within 5 min, indicating a monomer/dimer equilibrium that is shifted towards the fast-exchanging monomer. H/D exchange in n-propanol-OD, however, showed a partially protected gramicidin that slowly converts to a second species that exchanges nearly all the active hydrogens, indicating EX1 kinetics for the H/D exchange. We propose that this behavior is the result of the slower rate of unfolding in n-propanol compared with that in methanol. The rate constant for the unfolding of the dimer is the rate of disappearance of the partially protected species, and it agrees within a factor of two with a value reported in literature. The rate constant of dimer refolding can be determined from the ratio of the rate constant for unfolding and the affinity constant for the dimer, which we determined in an earlier study. The unfolding activation energy is 20 kcal mol−1, determined by performing the exchange experiments as a function of temperature. To study gramicidin in an even more hydrophobic medium than n-propanol, we measured its H/D exchange kinetics in a phospholipids vesicle and found a different H/D amide exchange behavior. Gramicidin is an unusual peptide dimer that can exhibit both EX1 and EX2 mechanisms for its H/D exchange, depending on the solvent.  相似文献   

20.
Inclusion of a polymer cushion between a lipid bilayer membrane and a solid surface has been suggested as a means to provide a soft, deformable layer that will allow for transmembrane protein insertion and mobility. In this study, mobile, tethered lipid bilayers were formed on a poly(ethylene glycol) (PEG) support via a two-step adsorption process. The PEG films were prepared by coadsorbing a heterofunctional, telechelic PEG lipopolymer (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-(pyridyldithio)propionate]) (DSPE-PEG-PDP) and a nonlipid functionalized PEG-PDP from an ethanol/water mixture, as described in a previous paper (Munro, J. C.; Frank, C. W. Langmuir 2004, 20, 3339-3349). Then a two-step lipid adsorption strategy was used. First, lipids were adsorbed onto the PEG support from a hexane solution. Second, vesicles were adsorbed and fused on the surface to create a bilayer in an aqueous environment. Fluorescence recovery after photobleaching experiments show that this process results in mobile bilayers with diffusion coefficients on the order of 2 microm2/s. The mobility of the bilayers is decreased slightly by increasing the density of tethered lipids. The formation of bilayers, and not multilayer structures, is also confirmed by surface plasmon resonance, which was used to determine in situ film thickness, and by fluorimetry, which was used to determine quantitatively the fluorescence intensity for each 18 by 18 mm sample. Unfortunately, fluorescence microscopy also shows that there are large defects on the samples, which limits the utility of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号