首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ultrafast spectrally resolved stimulated vibrational echo experiments measure the dephasing of the CO stretching mode of hemoglobin-CO (Hb-CO) inside living human erythrocytes (red blood cells). A method is presented to overcome the adverse impact on the vibrational echo signal from the strong light scattering caused by the cells. The results are compared to experiments on Hb-CO aqueous solutions. It is demonstrated that the dynamics of the protein as sensed by the CO ligand are the same inside the erythrocytes and in aqueous solution, but differences in the absorption spectra show that the cell affects the protein's potential energy surface.  相似文献   

2.
We report the use of spectrally resolved femtosecond two-color three-pulse photon echoes as a potentially powerful multidimensional technique for studying vibrational and electronic dynamics in complex molecules. The wavelengths of the pump and probe laser pulses are found to have a dramatic effect on the spectrum of the photon echo signal and can be chosen to select different sets of energy levels in the vibrational manifold, allowing a study of the dynamics and vibrational splitting in either the ground or the excited state. The technique is applied to studies of the dynamics of vibrational electronic states in the dye molecule Rhodamine 101 in methanol.  相似文献   

3.
A theoretical expression is developed for femtosecond coherent anti-Stokes Raman scattering (CARS) to quantitatively account for the vibrational line shape in the presence of nonresonant signal. The contributions of the resonant and nonresonant components are extracted from the emitted signal line shape as a function of Stokes wavelength and as a function of the temporal overlap of the two pump pulses (for spectrally resolved femtosecond CARS). The theory is compared to the measured spectra of the oxygen vibrational transition DeltaG(01)=1556.4 cm(-1) for temporal detunings of 0 and 700 fs.  相似文献   

4.
Ultrafast protein dynamics of the CO adduct of a myoglobin mutant with the polar distal histidine replaced by a nonpolar valine (H64V) have been investigated by spectrally resolved infrared stimulated vibrational echo experiments and molecular dynamics (MD) simulations. In aqueous solution at room temperature, the vibrational dephasing rate of CO in the mutant is reduced by approximately 50% relative to the native protein. This finding confirms that the dephasing of the CO vibration in the native protein is sensitive to the interaction between the ligand and the distal histidine. The stimulated vibrational echo observable is calculated from MD simulations of H64V within a model in which vibrational dephasing is driven by electrostatic forces. In agreement with experiment, calculated vibrational echoes show slower dephasing for the mutant than for the native protein. However, vibrational echoes calculated for H64V do not show the quantitative agreement with measurements demonstrated previously for the native protein.  相似文献   

5.
Heteronuclear multiple quantum (n=+/-0 and n=+/-2) correlated spectroscopy revamped by asymmetric z-gradient echo detection (CRAZED) experiments were performed on the spins 31P and 1H in a H3PO4 solution in order to determine the optimum flip angle for the read pulse. It has been shown that for the negative quantum signals, the maximum signals appear at beta=0, and for the positive quantum signals, the maximum signals appear at beta=pi. The CRAZED signals were compared to the single quantum signals in two-pulse two-gradient experiments. It is found that the CRAZED signals can also be distinguished into gradient echoes and spin echoes. The gradient-echo-type CRAZED signal requires beta=0 and the spin-echo-type CRAZED signal requires beta=pi for maximum echo intensities, in the same way as in single quantum experiments.  相似文献   

6.
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.  相似文献   

7.
Harmonic vibrational frequencies and vibronic intensities in the first S(0)-->S(1) (pipi( *)) absorption band of free-base porphin (H(2) P) are investigated by hybrid density functional theory (DFT) with the standard B3LYP functional. The S(0)-S(1) transition probability is calculated using time-dependent DFT with account of Franck-Condon (FC) and Herzberg-Teller (HT) contributions to the electric-dipole transition moments including displacements along all 108 vibrational modes. Two weak wide bands observed in the gas phase absorption spectra of the H(2) P molecule at 626 and 576 nm are interpreted as the 0-0 band of the X(1) A(g)-->1B(3u) transition and the 0-1 band with largest contributions from the nu(10)(a(g))=1610 cm(-1) and nu(19)(b(1g))=1600 cm(-1) modes, respectively, in agreement with previous tentative assignments. Both bands are induced by the HT mechanism, while the FC contributions are negligible. A number of fine structure bands, including combination of two vibrational quanta, are obtained and compared with available spectra from supersonic jet and Shpolskij matrices. Both absorption and fluorescence spectra are interpreted on ground of the linear coupling model and a good fulfillment of the mirror-symmetry rule.  相似文献   

8.
An analysis of the fluorescence of 3,4-benzpyrene in the vapour phase shows two contributions to the “anomalous” fluorescence: (i) the emission from the second excited state to the ground state and (ii) a vibronically induced S1 → S0 emission originating from the +520 cm?1 vibrational level. A comparison between the intensities of the emissions indicates that in the vapour phase the vibrational redistribution from the 520 cm? vibrational level of S1 to modes of lower frequencies is relatively slow.  相似文献   

9.
The dynamics of water in nanoscopic pools 1.7-4.0 nm in diameter in AOT reverse micelles were studied with ultrafast infrared spectrally resolved stimulated vibrational echo and pump-probe spectroscopies. The experiments were conducted on the OD hydroxyl stretch of low-concentration HOD in the H2O, providing a direct examination of the hydrogen-bond network dynamics. Pump-probe experiments show that the vibrational lifetime of the OD stretch mode increases as the size of the reverse micelle decreases. These experiments are also sensitive to hydrogen-bond dissociation and reformation dynamics, which are observed to change with reverse micelle size. Spectrally resolved vibrational echo data were obtained at several frequencies. The vibrational echo data are compared to data taken on bulk water and on a 6 M NaCl solution, which is used to examine the role of ionic strength on the water dynamics in reverse micelles. Two types of vibrational echo measurements are presented: the vibrational echo decays and the vibrational echo peak shifts. As the water nanopool size decreases, the vibrational echo decays become slower. Even the largest nanopool (4 nm, approximately 1000 water molecules) has dynamics that are substantially slower than bulk water. It is demonstrated that the slow dynamics in the reverse micelle water nanopools are a result of confinement rather than ionic strength. The data are fit using time-dependent diagrammatic perturbation theory to obtain the frequency-frequency correlation function (FFCF) for each reverse micelle. The results are compared to the FFCF of water and show that the largest differences are in the slowest time scale dynamics. In bulk water, the slowest time scale dynamics are caused by hydrogen-bond network equilibration, i.e., the making and breaking of hydrogen bonds. For the smallest nanopools, the longest time scale component of the water dynamics is approximately 10 times longer than the dynamics in bulk water. The vibrational echo data for the smallest reverse micelle displays a dependence on the detection wavelength, which may indicate that multiple ensembles of water molecules are being observed.  相似文献   

10.
We report an Ar/Kr ion laser induced spectrally resolved S1 → S0 emission from an azulene in a host naphthalene crystal observed at the helium λ-point and at 77 K. Less well resolved S1 → S0 emission from crystalline azulene dispersed in a KBr pellet at 300 K is also reported. For the 6471 Å excitation the emission from the azulene in naphthalene system is analyzed in terms of three components: a resonance enhanced Raman emission originating from a nonstationary laser photon energy state 800 cm?1 above the S1 origin, a partially relaxed fluorecence originating from the 665 cm?1 vibrational level of S1 and a totally relaxed fluorecence from the S1 origin (14651 cm?1). The interpretation of the spectral lines is based on totally symetric vibrational modes (406, 679, 825,902, 1203, 1269, 1401, and 1586 cm?1) the most prominent of which is the progression forming 825 cm?1 mode. On the basis of both energies and intensities, correlations are made between ground and excited state vibrations and are compared with earlier results. Based on our results, a discussion is given on a plausible relaxation scheme for our system including the influence of Franck—Condon factors on the observability of unrelaxed emission.  相似文献   

11.
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.  相似文献   

12.
A framework for calculating the intensity distribution and vibrational fine structure in the polarized ligand-field spectrum of transition metal complexes using the Herzberg-Teller approach is introduced and used to model the spectrum of the [PtCl4]2- ion. The model uses geometries, vibrational frequencies, and transition moments generated using density functional calculations on the ground and excited states, which arise from spin-allowed reorganization of the d electrons. The model predicts the whole spectral trace, including the polarization, the difference in the frequency of the electronic origin, the band maximum and the vertical transition energy, and the temperature dependence of the band intensities and the frequencies of the band maxima. Excitation to the 1A2g state is accompanied by a vibrational progression in the breathing mode of the excited state, as observed experimentally. Excitation to both the 1B1g and 1Eg states is accompanied by a loss of planarity and extended vibrational progressions in two modes, and the resulting spectra are inherently of low resolution.  相似文献   

13.
Ultrafast two-dimensional infrared (2D-IR) vibrational echo spectroscopy can probe the fast structural evolution of molecular systems under thermal equilibrium conditions. Structural dynamics are tracked by observing the time evolution of the 2D-IR spectrum, which is caused by frequency fluctuations of vibrational mode(s) excited during the experiment. However, there are a variety of effects that can produce line shape distortions and prevent the correct determination of the frequency-frequency correlation function (FFCF), which describes the frequency fluctuations and connects the experimental observables to a molecular level depiction of dynamics. In addition, it can be useful to analyze different parts of the 2D spectrum to determine if dynamics are different for subensembles of molecules that have different initial absorption frequencies in the inhomogeneously broadened absorption line. Here, an important extension to a theoretical method for extraction of the FFCF from 2D-IR spectra is described. The experimental observable is the center line slope (CLSomega(m)) of the 2D-IR spectrum. The CLSomega(m) is obtained by taking slices through the 2D spectrum parallel to the detection frequency axis (omega(m)). Each slice is a spectrum. The slope of the line connecting the frequencies of the maxima of the sliced spectra is the CLSomega(m). The change in slope of the CLSomega(m) as a function of time is directly related to the FFCF and can be used to obtain the complete FFCF. CLSomega(m) is immune to line shape distortions caused by destructive interference between bands arising from vibrational echo emission, from the 0-1 vibrational transition (positive), and from the 1-2 vibrational transition (negative) in the 2D-IR spectrum. The immunity to the destructive interference enables the CLSomega(m) method to compare different parts of the bands as well as comparing the 0-1 and 1-2 bands. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect the determination of the FFCF with the CLSomega(m) method. The CLSomega(m) can also provide information on the cross correlation between frequency fluctuations of the 0-1 and 1-2 vibrational transitions.  相似文献   

14.
Abstract —Fourier transform infrared (FTIR) difference spectra of the BR→rK transition in bacteriorhodopsin at 77→K are compared with analogous resonance Raman difference spectra obtained using a spinning sample cell at 77→K. The vibrational frequencies observed in the FTIR spectra of native purple membrane and of purple membrane regenerated with 15-deuterioretinal are in good agreement with the frequencies observed in the Raman spectra, indicating that the lines in the FTIR difference spectra arise predominantly from retinal chromophore vibrations. This agreement confirms that the spinning cell method for obtaining resonance Raman spectra of K minimizes potential contributions from unwanted photoproducts. The unexpected similarity between the resonance Raman scattering intensities and the FTIR absorption intensities for BR and K is discussed in terms of the delocalized electronic structure of the chromophore. Finally, comparison of the Schiff base regions of the K Raman and FTIR spectra provide additional information on the assignment of its Schiff base vibration.  相似文献   

15.
A new technique that combines nonphotochemical hole burning with multichannel detected fluorescence line narrowing has been used to obtain vibrationally resolved fluorescence spectra of squaraine chromophores in polymer matrices at 1.4 K. At a fixed excitation frequency, the intensities of the zero-phonon lines decay with time due to nonphotochemical hole burning, leaving behind a broader background attributed to emission from molecules excited into phonon sidebands. Subtracting the spectrum of the hole-burned sample from the initial one leaves predominantly a zero-phonon line excited spectrum exhibiting enhanced vibrational structure. Spectra of the same squaraine in polystyrene and polyethylene matrices show differences in the frequencies and intensities of the phonon sidebands, indicating differences in the frequencies and strengths of the matrix modes coupled to the electronic transition of the chromophore. The phonon densities of states inferred through different measurement techniques are compared and related to electronic dephasing rates.  相似文献   

16.
Time-resolved nonlinear optical activity measurement spectroscopy can be a useful tool for studying biomolecular and chemical reaction dynamics of chiral molecules. Only recently, the two-dimensional (2D) circularly polarized photon echo (CP-PE) spectroscopy of polypeptides and a photosynthetic light-harvesting complex were discussed, where the beam configuration was specifically controlled in such a way to eliminate the quadrupole contribution to the CP-PE signal. In this paper, we generalize the CP-PE spectroscopy by including the transition quadrupole contributions from peptide amide I vibrational transition and chlorophyll electronic transition. By using a density functional theory calculation method, the corresponding amide I vibrational and chlorophyll Q(y) electronic transition quadrupole tensor elements are determined. Amplitude of nonlinear optical transition pathway involving a quadrupole transition is found to be comparable to those of magnetic dipole terms for two different cases considered, i.e., dipeptides and photosynthetic antenna complex. However, due to the rotational averaging factors, the overall quadrupole contribution is an order of magnitude smaller than the magnetic dipole contribution. This suggests that the conventional 2D photon echo method and experimental scheme can be directly used to measure the 2D CP-PE signal from proteins and molecular complexes and that the 2D CP-PE signal is mainly dictated by the magnetic dipole contribution.  相似文献   

17.
IntroductionLaser ablation has been applied broadly toplasma production,cluster formation,nanometermaterial and thin film material preparation[1,2 ] .Us-ing spectroscopic technique and mass spectrometryto identify the transient species formed in the pro-cess could provide much useful information aboutthe prosperity ofplasma,the mechanism of materi-al growth[3 ,4] .Aluminum is an important metal material andwidely used in industry and daily life. To study thereaction mechanism of Al atoms with…  相似文献   

18.
We reexamined the vibronic structure of the jet-cooled 2,6-dimethylbenzyl radical that was generated from 1,2,3-trimethylbenzene seeded in a large amount of inert carrier gas helium using a pinhole-type glass nozzle in a corona excited supersonic expansion, from which the vibronically resolved emission spectrum was recorded with a long path double monochromator in the visible region. The spectrum exhibited bands arising from not only the D1 --> D0 transition but also the D2 --> D0 transition, in which transitions the accurate electronic energies of the D2 and D1 states and the revised vibrational mode frequencies in the ground electronic state were obtained by comparison with those from the known data of the precursor and an ab initio calculation.  相似文献   

19.
Peroxynitrous acid (HOONO) is generated in a pulsed supersonic expansion through recombination of photolytically generated OH and NO(2) radicals. A rotationally resolved infrared action spectrum of HOONO is obtained in the OH overtone region at 6971.351(4) cm(-1) (origin), providing definitive spectroscopic identification of the trans-perp (tp) conformer of HOONO. Analysis of the rotational band structure yields rotational constants for the near prolate asymmetric top, the ratio of the a-type to c-type components of the transition dipole moment for the hybrid band, and a homogeneous linewidth arising from intramolecular vibrational energy redistribution and/or dissociation. The quantum state distribution of the OH (nu=0,J(OH)) products from dissociation is well characterized by a microcanonical statistical distribution constrained only by the energy available to products, 1304+/-38 cm(-1). This yields a 5667+/-38 cm(-1) [16.2(1) kcal mol(-1)] binding energy for tp-HOONO. An equivalent available energy and corresponding binding energy are obtained from the highest observed OH product state. Complementary high level ab initio calculations are carried out in conjunction with second-order vibrational perturbation theory to predict the spectroscopic observables associated with the OH overtone transition of tp-HOONO including its vibrational frequency, rotational constants, and transition dipole moment. The same approach is used to compute frequencies and intensities of multiple quantum transitions that aid in the assignment of weaker features observed in the OH overtone region, in particular, a combination band of tp-HOONO involving the HOON torsional mode.  相似文献   

20.
The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号