首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(LiN3)n(n=1~2)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性和电荷布局等性质进行了理论研究.结果表明,LiN3团簇最稳定构型为直线构型;(LiN3)n(n=1~2)团簇中N-N键长在0.1146~0.1203nm之间,N-Li键长在0.1722~0.1987nm之间;团簇中Li原子全部显正电性,越靠近Li原子的N原子负电性越强,在直线构型的N3-离子中,两端的N原子均具负电荷,而中心N原子具正电荷.  相似文献   

2.
(MgB2)n(n=1~3)团簇结构与性质的密度泛函研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的杂化密度泛函B3IJYP方法在6-31G*基组水平上对(MgB2)n(n=1~3)团簇各种可能的构型进行几何结构优化,预测各团簇的最稳定结构,并对其振动特性、成键特性、极化率和超极化率等性质进行理论研究.结果表明,团簇的几何结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子处在端位,且显正电性,Mg原子的自然电荷在 0.559e~ 0.920e之间,B原子的自然电荷在-0.724e~ 0.197e之间;团簇中通常是B-B键和B-Mg键共存,较少出现Mg-Mg键,计算得到的B-B键键长在0.153~0.182 nm之间,B-Mg键键长在0.218~0.231 nm之间.  相似文献   

3.
应用密度泛函理论(DFT)B3LYP方法在6-311+G(d)水平上计算并分析Li2Bn(n=1~10)团簇的平均结合能、能级间隙、二阶能量差分和极化率等物理化学性质.由此讨论了团簇的几何结构和电子性质.研究表明:Li2Bn(n=1~10)团簇基态大多为主体构型,能级间隙和二阶能量差分结果表明Li2B8为幻数团簇.对平均线性极化率和极化率的各向异性不变量研究表明,基态Li2Bn团簇的电子结构随B原子的增加虽然趋于紧凑,但尚未形成特定的堆积方式.  相似文献   

4.
采用密度泛函DFT中的B3LYP方法,对AlWn(n=1~9)团簇的几何结构,能级间隙,垂直电离能进行了计算,结果表明:当n≤3时,团簇为平面结构,当n≥4时,团簇出现空间立体结构,并以AlW3为骨架进行增长,其中AlW稳定性最好。  相似文献   

5.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6—31G^*基组水平上对(LiN3)n(n=1~2)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性和电荷布局等性质进行了理论研究.结果表明,LkN3团簇最稳定构型为直线构型;(LiN3)n(n=1~2)团簇中N—N键长在0.1146-0.1203nm之间,N—Li键长在0.1722~0.1987nm之间;团簇中Li原子全部显正电性,越靠近Li原子的N原子负电性越强,在直线构型的Nf离子中,两端的N原子均具负电荷,而中心N原子具正电荷.  相似文献   

6.
MgmBn(m=1,2;n=1-4)团簇结构与性质的密度泛函理论研究   总被引:3,自引:0,他引:3       下载免费PDF全文
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对MgmBn(m=1,2;n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、电离势、成键特性、极化率和超极化率等性质进行了理论研究.结果表明,团簇的最稳定结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子通常处在端位,且显正电性;团簇中通常是B-B键和B-Mg键共存,极少出现Mg-Mg键,计算得到的B-B键键长在0.153-0.182nm之间,B-Mg键键长在0.221-0.231nm之间.  相似文献   

7.
应用密度泛函理论(DFT)B3LYP方法在6-311+G(d)水平上计算并分析了Li2Bn(n=1-10)团簇的几何结构及电子性质.同时,讨论了团簇的平均结合能、能级间隙、二阶能量差分和极化率.研究表明: Li2Bn(n=1-10)团簇基态大多为立体构型. 能级间隙和二阶能量差分结果表明Li2B8是幻数团簇.对平均线性极化率和极化率的各向异性不变量研究表明,基态Li2Bn团簇的电子结构随B原子的增加虽然趋于紧凑,但尚未形成特定的堆积方式.  相似文献   

8.
Bn(n =2-15)团簇的几何结构和电子性质   总被引:5,自引:0,他引:5       下载免费PDF全文
应用密度泛函理论中的B3LYP方法计算并分析了不同生长模式下Bn(n= 2-15)团簇的几何结构及电子性质.同时,比较和讨论了不同生长模式下硼团簇的原子束缚能、能级间隙和第一电离势.研究表明:直线构型稳定性最低,金属性较强,尤其在n=8时能隙仅有0.061eV,说明该团簇已具有金属特征.平面或准平面构型稳定性最高,非金属性强.立体构型的稳定性与金属性介于直线和平面构型之间.另外,还讨论了基态团簇的束缚能、能量二阶差分、能级间隙和第一电离势随团簇尺寸的变化,结果表明B12与B14是幻数团簇.  相似文献   

9.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(Ca3N2)n(n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性、电荷特性和稳定性等进行了理论分析.结果表明,(Ca3N2)n(n=1-4)团簇最稳定构型中N原子为3-5配位,Ca-N键长为0.231-0.251 mm,Ca-Ca键长为0.295-0.358 nm;N原子的自然电荷在-1.553 e--2.241 e之间,Ca原子的自然电荷在1.035e-1.445e之间,Ca和N原子间相互作用呈现较强的离子性,Ca3N2和(Ca3N2)3团簇有相对较高的动力学稳定性.  相似文献   

10.
采用密度泛函DFT中的B3LYP方法,选择LANL2DZ基组,对(TiZr)x(n=1~7)团簇的各种可能构型进行了优化,得到了各团簇的最稳定结构,并对最稳定结构的几何结构、IR光谱、成键特性和稳定性等进行了理论分析.结果表明:(TiZr)n(n=2~7)团簇易形成笼状结构,Ti原子易于得到电子,而Zr原子易于失去电子;体系随着原子数的增多,自由度增加,IR光谱表现出宽带谱特征;定域化轨道标识函数图揭示了(TiZr)n(n=1~7)基态团簇原子间多为金属键作用,在特定结构下有共价键成分出现;随着原子数增加,(TiZr)n(n=1~7)团簇带隙减小,金属性增强;(TiZr)1和(TiZr)3团簇具有相对较高的动力学稳定性.  相似文献   

11.
利用密度泛函理论B3LYP方法, 在6-311G*基组水平上对(KN3)n(n=1~5)团簇各种可能的结构进行了几何结构优化, 预测了各团簇的最稳定结构. 并对最稳定结构的振动特性、成键特性、电荷分布和稳定性性质进行了分析研究. 结果表明, 叠氮化合物中叠氮基以直线型存在, KN3团簇最稳定结构为直线型, (KN3)n(n=2~3)团簇最稳定结构为环形结构, (KN3)n(n=4~5)团簇最稳定结构是由(KN3)2团簇最稳定结构形成的平面和空间结构. N-N 键键长在0.1156~0.1196 nm之间, N-K键键长在0.2357~0.2927 nm之间; 叠氮基中间的N原子显示正电性, 两端的N原子显示负电性, 且与K原子直接作用的N原子负电性更强, 金属K原子与N原子之间形成离子键. (KN3)n(n=1~5)团簇最稳定结构的IR光谱最强振动峰均位于2180~2230 cm-1, 振动模式为叠氮基中N-N键的反对称伸缩振动. 稳定性分析显示, (KN3)3团簇具有相对较高的动力学稳定性.  相似文献   

12.
利用密度泛函理论B3LYP方法, 在6-311G*基组水平上对(KN3)n(n=1~5)团簇各种可能的结构进行了几何结构优化, 预测了各团簇的最稳定结构. 并对最稳定结构的振动特性、成键特性、电荷分布和稳定性性质进行了分析研究. 结果表明, 叠氮化合物中叠氮基以直线型存在, KN3团簇最稳定结构为直线型, (KN3)n(n=2~3)团簇最稳定结构为环形结构, (KN3)n(n=4~5)团簇最稳定结构是由(KN3)2团簇最稳定结构形成的平面和空间结构. N-N 键键长在0.1156~0.1196 nm之间, N-K键键长在0.2357~0.2927 nm之间; 叠氮基中间的N原子显示正电性, 两端的N原子显示负电性, 且与K原子直接作用的N原子负电性更强, 金属K原子与N原子之间形成离子键. (KN3)n(n=1~5)团簇最稳定结构的IR光谱最强振动峰均位于2180~2230 cm-1, 振动模式为叠氮基中N-N键的反对称伸缩振动. 稳定性分析显示, (KN3)3团簇具有相对较高的动力学稳定性.  相似文献   

13.
本工作采用LANL2DZ赝势基组、B3LYP方法对(HgSe)n(n=1~6)团簇进行了结构优化、自然键原子轨道和频率计算,得到(HgSe)n(n=1~6)团簇基态的平衡几何结构、电子状态、垂直电离势、垂直电子亲和势、偶极矩、三个基本热力学函数等相关性质,并系统分析了该团簇的几何构型、原子净电荷布局、前沿分子轨道特征.结果表明:基态稳定结构(HgSe)2为平面四边形,(HgSe)n(n=3~6)为笼状结构,且稳定顺序为(HgSe)5(HgSe)4(HgSe)6(HgSe)2HgSe(HgSe)3,极性顺序为:(HgSe)4HgSe(HgSe)3(HgSe)5(HgSe)6(HgSe)2,(HgSe)6和(HgSe)2分子空间结构的对称性较好.(HgSe)n(n=1~6)团簇各体系都有较好的电子供体及受体等活性部位,随着n增大轨道离域现象明显,利于电子的转移,导电性增强.  相似文献   

14.
本工作采用LANL2DZ赝势基组、B3LYP方法对(HgSe)n(n=1~6)团簇进行了结构优化、自然键原子轨道和频率计算,得到(HgSe)n(n=1~6)团簇基态的平衡几何结构、电子状态、垂直电离势、垂直电子亲和势、偶极矩、三个基本热力学函数等相关性质,并系统分析了该团簇的几何构型、原子的净电荷布局、前沿分子轨道特征。结果表明:基态稳定结构(HgSe)2为平面四边形,(HgSe)n(n=3~6)为笼状结构,且稳定顺序为(HgSe)5>(HgSe)4>(HgSe)6>(HgSe)2>HgSe>(HgSe)3,极性顺序为:(HgSe)4>HgSe>(HgSe)3>(HgSe)5>(HgSe)6>(HgSe)2,(HgSe)6、(HgSe)2分子空间结构的对称性较好。(HgSe)n(n=1~6)团簇各体系都有较好的电子供体及受体等活性部位,随着n增大轨道离域现象明显,利于电子的转移,导电性增强。  相似文献   

15.
利用基于密度泛函理论的第一性原理方法,在广义梯度近似(GGA)下对Ga_(2n)(n=1~4)团簇进行了几何结构优化和结合能计算,并对其电子结构及成键特性进行了分析.结果表明,Ga_2,Ga_4团簇的基态都是自旋极化态,Ga_6团簇的能量局域极小的八面体结构也具有自旋极化;这些团簇的最外层分子轨道的空间分布是对称的,最外层分子轨道之间的能量相差很小,最外层分子轨道的近简并引起了自旋极化;对称性较高的团簇容易形成近简并的最外层分子轨道.  相似文献   

16.
Aun(n=2—9)团簇的几何结构和电子特性   总被引:6,自引:0,他引:6       下载免费PDF全文
采用密度泛函DFT中的 B3LYP 方法,选择LANL2DZ基组,对Aun(n=2—9)小团簇的各种可能结构进行优化,得到了它们的基态平衡结构并计算出其原子化能.研究表明:随着团簇尺寸的增大,单个原子的平均原子化能逐渐增大.同时分析了团簇的能级分布、最高占据轨道与最低空轨道之间形成的能级间隙.计算出了电子亲和能和电离势,计算值与实验值非常接近.最后分析了费米能级、电子亲和能和电离势形成“奇-偶”振荡效应的原因. 关键词: Au团簇 平衡几何结构 能隙 电子性质  相似文献   

17.
Au_n(n=2—9)团簇的几何结构和电子特性   总被引:3,自引:0,他引:3       下载免费PDF全文
采用密度泛函DFT中的B3LYP方法 ,选择LANL2DZ基组 ,对Aun(n =2— 9)小团簇的各种可能结构进行优化 ,得到了它们的基态平衡结构并计算出其原子化能 .研究表明 :随着团簇尺寸的增大 ,单个原子的平均原子化能逐渐增大 .同时分析了团簇的能级分布、最高占据轨道与最低空轨道之间形成的能级间隙 .计算出了电子亲和能和电离势 ,计算值与实验值非常接近 .最后分析了费米能级、电子亲和能和电离势形成“奇 -偶”振荡效应的原因  相似文献   

18.
为寻求单一源前驱体,采用密度泛函理论DFT-B3LYP方法系统研究新的第IIIA主族叠氮簇合物的结构与性质关系。结果表明,簇合物(I2InN3) n (n=2-4)的优化构型均为由不同子体系的叠氮基α−N和In原子相连形成的环状结构,叠氮基以直线型存在。研究了几何参数随聚合度的变化趋势,并对计算获得的IR谱进行归属。能量和聚合焓均揭示簇合物的稳定性次序为3A>3B和4B>4C>4A>4D。簇合物(I2InN3)n (n=1-4)的热力学函数随温度升高和聚合度n增大而増加。热力学分析表明聚合反应在温度高达500 K均可自发进行。  相似文献   

19.
TinMg(n=1-10)掺杂团簇的密度泛函研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用密度泛函(DFT)中的B3LYP方法,选择sto-3g基组,优化并得到了TinMg(n=1-10)小团簇的基态平衡结构,计算出了掺杂团簇的基态结构的平均键长、对称性、原子化能、能级分布、能级间隙、束缚能、总能的二阶差分.结果表明,随着团簇原了数的增加.镁原子更容易趋于团簇表面位置,镁-钛平均键长大于钛-钛平均键长,以对称性结构为最稳定的基态结构,且呈多个五角双锥结构.其中Ti5Mg和Ti8Mg的结构更为稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号