首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mixed micelles of cationic gemini surfactants C12C(S)C12Br2 (S=3, 6, and 12) with the nonionic surfactant Triton X-100 (TX100) have been studied by steady-state fluorescence, time-resolved fluorescence quenching, electrophoretic light scattering, and electron spin resonance. Both the surfactant composition and the spacer length are found to influence the properties of mixed micelles markedly. The total aggregation number of alkyl chains per micelle (N(T)) goes through a minimum at X(TX100)=0.8. Meanwhile, the micropolarity of the mixed micelles decreases with increasing X(TX100), while the microviscosity increases. The presence of minimum in N(T) is explained in terms of the competition of the reduction of electrostatic repulsion between headgroups of cationic gemini surfactant with the enhancement of steric repulsion between hydrophilic headgroups of TX100 caused by the addition of TX100. The variations of micropolarity and microviscosity indicate that the incorporation of TX100 to the gemini surfactants leads to a more compact and hydrophobic micellar structure. Moreover, for the C12C3C12Br2/TX100 mixed micelle containing C12C3C12Br2 with a shorter spacer, the more pronounced decrease of N(T) at X(TX100) lower than 0.8 may be attributed to the larger steric repulsion between headgroups of TX100. Meanwhile, the increase of microviscosity and the decrease of micropolarity are more marked for the C12C12C12Br2/TX100 mixed micelle, owing to the looped conformation of the longer spacer of C12C12C12Br2.  相似文献   

2.
We have investigated the mixing behavoir of a pH‐mediated ternary surfactant mixture at constant ratio of dodecyldimethylamine oxide (DDAO) and Triton X‐100 (9:1). From the equilibrium surface tension measurements at different pHs, the critical micelle concentration (cmc) data were obtained as functions of the pH. Values of the cmc and composition of the micelles were predicted using the regular solution approximation. To some extent, the experimental cmc values agree with the predicted cmc. The average degree of ionization of dodecyldimethylamine oxide in the mixed surfactant systems was estimated using potentiometric titrations. The surface electric potential of the micelles (Ψo) was determined using two methods, one by hydrogen ion titration and the other by the dissociation constants of an acid‐base indicator. In a high degree of ionization of DDAO in the micelles phase (am), Ψo estimated from acid‐base indicator is much higher than that from hydrogen ion titration. In the protonated dodecyldimethylamine oxide/TX‐100 binary surfactant system, Ψo estimated from hydrogen ion titration was as high as 89 mV. The micellar aggregation numbers evaluated by the steady‐state fluorescence probe method increase with pH except at pH=5.03. At pH=5.03, the maximum micelle aggregation number was observed.  相似文献   

3.
A unique pH-dependent phase behavior from a copolymer micellar solution to a collapsed hydrogel with micelles ordered in a hexagonal phase was observed. Small-angle neutron scattering (SANS) was used to follow the pH-dependent structural evolution of micelles formed in a solution of a pentablock copolymer consisting of poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) (PDEAEM25-b-PEO100-b-PPO65-b-PEO100-b-PDEAEM25). Between pH 3.0 and pH 7.4, we observed the presence of charged spherical micelles. Increasing the pH of the micelle solution above pH 7.4 resulted in increasing the size of the micelles due to the increasing hydrophobicity of the PDEAEM blocks above their pKa of 7.6. The increase in size of the spherical micelles resulted in a transition to a cylindrical micelle morphology in the pH range 8.1-10.5, and at pH >11, the copolymer solution undergoes macroscopic phase separation. Indeed, the phase separated copolymer sediments and coalesces into a hydrogel structure that consists of 25-35 wt % water. Small-angle X-ray scattering (SAXS) clearly indicated that the hydrogel has a hexagonal ordered phase. Interestingly, the process is reversible, as lowering of the pH below 7.0 leads to rapid dissolution of the solid into homogeneous solution. We believe that the hexagonal structure in the hydrogel is a result of the organization of the cylindrical micelles due to the increased hydrophobic interactions between the micelles at 70 degrees C and pH 11. Thus we have developed a pH-/temperature-dependent, reversible hierarchically self-assembling block copolymer system with structures spanning nano- to microscale dimensions.  相似文献   

4.
Surfactant self-diffusion coefficients have been measured on a binary system of 1-O-beta-3,7-dimethyloctyl-D-maltopyranoside (beta-Mal(2)(Ger))/water and a mixed surfactant system of beta-Mal(2)(Ger)/1-O-beta-3,7-dimethyloctyl-D-glucopyranoside (beta-Glc(Ger))/water at 25 degrees C. For comparison, measurements have also been made on 1-O-beta-decyl-D-maltopyranoside (beta-Mal(2)C(10))/water and beta-Mal(2)C(10)/1-O-beta-decyl-D-glucopyranoside (beta-GlcC(10))/water. The hydrodynamic radius of beta-Mal(2)(Ger) micelles obtained from the micellar diffusion coefficient is around 3 nm and nearly equal to that of beta-GlcC(10) micelles within experimental error. In the mixed surfactant systems, the hydrodynamic radii for both systems increase with increasing X(G) (the mole fraction of beta-Glc(Ger) or beta-GlcC(10) in the total mixed solute) above X(G) congruent with 0.4 when the total surfactant concentration is kept constant at 2 wt%. The R(H) of beta-Glc(Ger)/Mal(2)(Ger) micelles increases more rapidly than beta-GlcC(10)/beta-Mal(2)C(10) micelles, and then phase separation occurs at X(G) congruent with 0.65. On the other hand, the R(H) of beta-GlcC(10)/beta-Mal(2)C(10) micelles continues to increase until the phase separation occurs at X(G) congruent with 0.92. Measurements have also been performed as a function of total surfactant concentration at constant X(G) (=0.6). The CMC of the beta-Glc(Ger)/Mal(2)(Ger) system is larger than that of the beta-GlcC(10)/beta-Mal(2)C(10) system as expected from the results of the pure surfactant systems published previously. The R(H) increases with increasing total surfactant concentration for both systems. At higher concentrations, the R(H) of beta-Glc(Ger)/Mal(2)(Ger) micelles increases more rapidly than beta-GlcC(10)/beta-Mal(2)C(10) micelles. These results can be explained by the fact that the geranyl and decyl chains have the same volume but different chain lengths.  相似文献   

5.
The flavonoid quercetin is known to reduce the α-tocopheroxyl radical (˙TocO) and reconstitute α-tocopherol (TocOH). Structurally related polyphenolic compounds, hydroxy-2,3-diarylxanthones (XH), exhibit antioxidant activity which exceeds that of quercetin in biological systems. In the present study repair of ˙TocO by a series of these XH has been evaluated using pulse radiolysis. It has been shown that, among the studied XH, only 2,3-bis(3,4-dihydroxyphenyl)-9H-xanthen-9-one (XH9) reduces ˙TocO, though repair depends strongly on the micro-environment. In cationic cetyltrimethylammonium bromide (CTAB) micelles, 30% of ˙TocO radicals are repaired at a rate constant of ~7.4 × 10(6) M(-1) s(-1) by XH9 compared to 1.7 × 10(7) M(-1) s(-1) by ascorbate. Water-soluble Trolox (TrOH) radicals (˙TrO) are restored by XH9 in CTAB (rate constant ~3 × 10(4) M(-1) s(-1)) but not in neutral TX100 micelles where only 15% of ˙TocO are repaired (rate constant ~4.5 × 10(5) M(-1) s(-1)). In basic aqueous solutions ˙TrO is readily reduced by deprotonated XH9 species leading to ionized XH9 radical species (radical pK(a) ~10). An equilibrium is observed (K = 130) yielding an estimate of 130 mV for the reduction potential of the [˙X9,H(+)/XH9] couple at pH 11, lower than the 250 mV for the [˙TrO,H(+)/TrOH] couple. A comparable value (100 mV) has been determined by cyclic voltammetry measurements.  相似文献   

6.
Water-soluble pH-responsive [60]fullerene end-capped poly(acrylic acid) (PAA85-b-C60) was synthesized using atom-transfer radical polymerization (ATRP) technique. The unusual morphological transformation of the polymer induced by the binding of nonionic surfactant Triton X-100 (TX100) at different degrees of neutralization (alpha) was investigated using isothermal titration calorimetry (ITC), UV-vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). For the 5 mM (monomer concentration) polymer solution at pH < 4, approximately 1.3 mM TX100 binds specifically to C60 domains of the polymeric micelles driven by hydrophobic interaction, which induces a structural transformation of the polymer from a large compound micelle with a radius of 110 nm to a dense precipitated spherical polymer/surfactant complex (PSC) with a radius of 500 nm. The precipitates are resolubilized by a wetting layer of TX100 in excess surfactant (> 1.7 mM in the polymer solution). The binding is significantly weakened and the complexation is disrupted with increasing pH, where the interaction completely ceased at pH > 6.  相似文献   

7.
We showed in a previous study that a water-nonionic surfactant system, where the surfactant is a 9:1 mixture of tetraethylene glycol monodecyl ether (C(10)E(4)) and pentaethylene glycol monodecyl ether (C(10)E(5)), forms a disconnected lamellar (L(α)) phase. Thus, the isotropic phase spans the whole concentration range from the water-rich L(1) region to the surfactant-rich L(2) region of the phase diagram. The L(1) and L(2) regions are connected via an isotropic channel that separates the two regions of the L(α) phase. In this letter, we monitored the structural evolution of the isotropic phase along a path through this isotropic channel via (1)H NMR self-diffusion measurements. We used this technique because it enables us to distinguish between discrete and bicontinuous structures by comparing the relative self-diffusion coefficients (obstruction factors) D/D(0) of the solvents (i.e. of water and surfactant in the present case). We found that the obstruction factor of water decreases whereas the obstruction factor of the surfactant increases with increasing surfactant concentration and increasing temperature. This trend is interpreted as the transition from a water-continuous L(1) region, which contains discrete micelles, to a bicontinuous structure, which may extend to very high surfactant concentrations. Although there is good evidence of bicontinuity over a broad concentration range, there is no evidence of inverse micelles or any other microstructure at the highest concentration studied in the surfactant-rich L(2) phase.  相似文献   

8.
Ultrafast photoinduced bimolecular electron transfer (ET) dynamics between 7-aminocoumarin derivatives and N,N-dimethylaniline (DMAN) has been studied in neutral (TX100), cationic (DTAB) and anionic (SDS) micellar media. A very fast decay time constant (tau(fast)) shorter than approximately 10 ps has been observed for the coumarins in the presence of DMAN in all of the three micellar media. In this time scale, reactants in the micellar phase undergo ET interactions without involving diffusion or reorientation of the reactants and thus can be envisaged as equivalent to nondiffusive bimolecular ET reaction. The fastest ET rates estimated as the inverse of the shortest lifetime components of the fluorescence decay (k(et) congruent with tau(fast)(-1)) nicely follow the predicted Marcus inversion behavior with reaction exergonicity (-DeltaG degrees), irrespective of the nature of micelles considered. Onset of inversion in ET rates occur at approximately 0.61 eV lower exergonicity in SDS and TX100 micelles compared with that in DTAB micelle and are rationalized following two-dimensional ET (2DET) theory. These differences suggest the possibility of tuning Marcus inversion by proper selection of micelles. Interestingly, ET rates (k'(et)) obtained from the conventional Stern-Volmer analysis of the relatively longer time constants of the fluorescence decays also exhibit similar Marcus correlation with DeltaG degrees, showing clear inversion behavior. Fitting of Marcus correlation curves for k(et) and k'(et) indicate two largely different values for the electronic coupling parameters. In micellar media, as the interacting donor-acceptor molecules are on an average expected to be separated by an intervening surfactant chain and the reorientation rate of the reactants is quite slow, it is predicted that the ultrafast ET (k(et)) component arises because of the surfactant separated donor-acceptor pairs that are orientated perfectly to give the maximum electronic coupling. The slower ET (k'(et)) is predicted to arise because of those pairs where the donor-acceptor orientations are not very suitable but good enough to give a sizable electronic coupling.  相似文献   

9.

We have investigated the mixing behavior of the mixtures of dodecyldimethylamine oxide (DDAO) and Triton X‐100 (TX‐100) at different ratios of the two surfactants and at different values of pH. From the equilibrium surface tension measurements, the critical micelle concentration (CMC) and surface tensions at CMC data were obtained as functions of the composition. For the binary mixtures of dodecyldimethylamine oxide and TX‐100 at different ratios in the natural values of pH, the behaviors of the mixtures deviate positively from ideal during micellization. The minimum of CMC of the mixtures of dodecyldimethylamine oxide and Triton X‐100 was observed in the range 4.0?) increased with the decrease of pH. At pH=4.99, the activities of the counterion decreased with the increase of the concentration of TX‐100 at a constant concentration of DDAO. At pH=1.96, the activities of the counterion increased with the increase of the concentration of TX‐100. However, the conductivities of the solution decreased with the increase of the concentration of TX‐100 at both pH=4.99 and pH=1.96. The experimental results show that the effect of TX‐100 on the activities of the counterion at pH=4.99 is different from that at pH=1.96.  相似文献   

10.
The effect of toluene solubilization on the size and mobility of Triton X100 (TX100) micelles and TX100/sodium dodecyl sulfate (SDS) mixed micelles was studied by turbidimetry, dynamic light scattering, and capillary electrophoresis. Micelle growth due to toluene solubilization was observed for both surfactant systems; however, two different modes of growth were seen. Mixed micelles in 0.1 M NaCl are spherical (apparent diameter d(app) = 8 nm) and remain so while taking up 3 mM toluene, with a volume increase per micelle of deltaV(m) = 50 nm3. In 0.5 M NaCl, the large d(app) of both nonionic and mixed micelles (14 and 24 nm, respectively) indicate ellipsoidal or rodlike shapes, and their large increases in d(app) upon addition of 3 mM toluene thus correspond to elongational growth, with the same deltaV(m) = 50 nm3. Further addition of toluene to TX100/SDS in 0.5 M NaCl results in a dramatic increase in micelle size followed by an unexpected bimodal size distribution. The addition of excess toluene leads to the formation of ca. 140 nm toluene droplets, stabilized mainly by monomers of the high critical micelle concentration surfactant, SDS. These microemulsions coexist with the smaller (20 nm) swollen mixed micelles.  相似文献   

11.
Water-soluble, pH-responsive mono- and di-[60]fullerene end-capped poly(acrylic acid)s (PAA-C60 and C60-PAA-C60) were synthesized using the atom transfer radical polymerization technique. Isothermal titration calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy were employed to study the supramolecular complexation between fullerene end-capped PAAs and nonionic surfactant, polyethylene glycol (9-10) tert-octylphenyl ether, also known as Triton X100 (TX100) at different pH values. At pH < 4, TX100 bound specifically to C60 domains driven by hydrophobic and pi-pi interactions between TX100 and fullerene molecules. The binding was exothermic, and the magnitude of the interaction decreased gradually with increasing pH. The amount of polymer-bound TX100 was proportional to the fullerene content, which was approximately 1.3 and approximately 2.5 mM for 5 mM (concentration of carboxylic groups) PAA-C60 and C60-PAA-C60, respectively. Morphological transformations resulting in the formation of polymer/surfactant complex (PSC) precipitates in the course of binding were observed for both polymers. The PSC of PAA-C60 possessed a dense spherical structure, whereas the PSC of C60-PAA-C60 possessed a lamellar stacking structure. The PSC precipitates resolubilized in excess amounts of TX100 to form stable aggregates.  相似文献   

12.
The charge renormalization in planar and spherical charged lipidic aqueous interfaces has been investigated by means of thermodynamic and electrokinetic measurements. We analyzed the behavior of mixed DOTAP/DOPE monolayers at the air-electrolyte solution interface and DOTAP/DOPE liposomes 100 nm in size dispersed in an aqueous phase of varying ionic strength. For the two systems, we have compared the "effective" surface charge derived from the measurements of surface potential and zeta-potential to the "bare" charge based on the stoichiometry of the lipid mixture investigated. The results confirm that a strong charge renormalization occurs, whose strength depends on the geometry of the mesoscopic system. The dependence of the "effective" charge on the "bare" charge is discussed in light of an analytical approximation based on the Poisson-Boltzmann equation recently proposed.  相似文献   

13.
pH and cinnamic acid (CA)-triggerable liposome was prepared by stabilizing dioleoylphosphatidylethanolamine (DOPE) bilayer with polyethyleneimine (PEI)/palmitic acid (PA) mixture. PEI/PA mixture was air/water interface-active, possibly due to the formation of PEI/PA salt conjugate. When the weight ratio of DOPE to PEI/PA mixture was 200:1, 100:1, 50:1, and 20:1, the fluorescence quenching degree of calcein loaded in the DOPE/PEI/PA assembly prepared using PBS (10 mM, pH 7.4) was 70.7%, 68.7%, 35.3%, and 14%, respectively, indicating that DOPE could be assembled into liposome at the physiological pH value with the aid of the PEI/PA mixture. The hydrodynamic mean diameter of liposome increased from 289 nm to 702 nm on increasing the weight ratio of the DOPE to PEI/PA mixture, possibly because of the bulky PEI chains. The release degree in 120 seconds at pH 4.5, pH 6.0, pH 7.4, and pH 9.0 was about 85%, 24.1%, 10.1%, and 62.0%, respectively, when the suspension of liposome of which the DOPE to PEI/PA mixture weight ratio was 50:1 (pH 7.4) was injected into the release medium of different pH values. The triggered release upon the acidification (i.e., pH 7.4–4.5) and the alkalization (i.e., pH 7.4–9.0) was possibly because PA and PEI were deionized under acidic and alkali conditions, respectively; thus the salt bridge of PEI/PA conjugate could break down. The DOPE liposome also exhibited CA-triggered release. The release degree in 120 seconds at 25°C was 23.1% and it was higher than the release degree at 50°C, 10.9%, possibly because CA could render PEI chains condensed and assembled under upper the critical solution temperature.  相似文献   

14.
We explored the effects of addition of the nonionic surfactant Triton X‐100 on the stability of aggregates of poly(ethylene glycol‐bl‐propylene sulfide) di‐ and triblock copolymers. Fluorescence spectra of pyrene, used as a probe molecule, elucidated the various stages of transformation from pure copolymeric micelles to surfactant‐rich micelles. Turbidity measurements yielded insight into the mechanism of the interaction, the hydrophobicity of the copolymer driving the process. Triton X‐100 tends to strongly interact with highly hydrophobic copolymers by inserting into the core of the micellar aggregates. On the other hand, Triton X‐100 tends to interact with the corona of micelles formed by less hydrophobic copolymers which, for this reason, are more stable upon addition of this destabilizing agent. Kinetic data give evidence that only monomers, not micelles of surfactant, interact with the copolymer micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2477–2487, 2008  相似文献   

15.
We have investigated how the dynamics of surfactant molecules changes with the vesicle-micelle transition by (1)H NMR relaxation studies on the sodium decyl sulfate (SDeS)-decyltrimethylammonium bromide (DeTAB)-deuterium oxide system. The study has been planned with reference to the phase diagram of the SDeS-DeTAB-water system deduced from thermodynamic analysis of the surface tension data. The spin-lattice relaxation time (T(1)) and the spin-spin relaxation time (T(2)) are measured at 90 and 400 MHz at various total molalities, m, and compositions, X(2), of the surfactants. The data were analyzed according to the "two-step" model developed by Wennerstr?m et al. and molecular dynamics of the surfactant is discussed from the viewpoint of correlation time tau(f) associated with the local fast motion of the surfactant molecule, correlation time tau(s) associated with the slow overall motions of the aggregate and surfactant molecules within it, and local order parameter S. We find tau(s) of vesicles is an order of magnitude larger than that of micelles signifying that the tumbling of vesicle particles and surfactant diffusion over the vesicle are much slower than those for micelle. Tau(f) and S for vesicles are also larger than those for micelles. Molecular environments of the surfactant are also discussed from the dependence of the chemical shifts on m at constant X(2) or from that on X(2) at constant m. When the chemical shifts in vesicle and micelle are compared at constant m, the chemical shifts in vesicle are displaced to a lower magnetic field than those in micelle, which implies that the surfactant molecules are arranged more closely to each other in the vesicle than in the micelle.  相似文献   

16.
Kinetics of the reaction between d‐glucose and Cr(VI) in the absence and presence of surfactant micelles have been studied by a spectrophotometric method in aqueous‐acidic solutions of perchloric acid. It was observed that the reaction has a nonautocatalytic followed by an autocatalytic pathway. The rate of the initial stage increases with increase in [glucose], [HClO4] and temperature. Due to precipitation, the effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) could not be studied whereas the oxidation is catalyzed by anionic micelles of sodium dodecyl sulfate (SDS) and nonionic micelles of Triton X‐100 (TX‐100). The results are discussed in terms of the pseudo‐phase kinetic model. Activation parameters are evaluated and a mechanism consistent with the results is proposed. A rate law for the reaction has also been derived. The redox reaction occurs through a Cr(VI)→Cr(IV) path.  相似文献   

17.
We present the phase behavior and thermodynamics of the catanionic mixture of the gemini surfactant hexanediyl-alpha,omega-bis(dodecyldimethylammonium bromide), designated here as 12-6-12Br(2), and sodium dodecyl sulfate (SDS) over the full range of composition, at the water-rich corner. Visual and turbidity measurements of the mixtures provide some basic macroscopic information on phase behavior. The structure of the aggregates formed spontaneously in the mixtures has been observed with TEM. As the molar fraction of SDS, X(SDS), is increased, at constant total surfactant concentration, the aggregation morphologies change gradually from gemini-rich micelles, through multiphase regions containing a precipitate (catanionic surfactant) and a vesicle region, to SDS-rich micelles. From isothermal titration calorimetry measurements, the phase boundaries and corresponding enthalpy changes for phase transitions have been obtained. The formation of the different microstructures, in particular, the spontaneously formed vesicles in the SDS-rich side, is discussed on the basis of geometric and electrostatic effects occurring in the SDS-gemini mixture.  相似文献   

18.
The zeta-potentials of the self-assembled surface ionic surfactants (sodium dodecyl sulfate—SDS and hexadecyltrimethyl ammonium bromide—CTAB) on graphite surfaces were determined both from streaming potential and electrophoretic mobility measurements. The adsorption of the surfactants at graphite–liquid interfaces has been studied using atomic force microscopy (AFM) soft-contact imaging which shows the formation of linear, parallel hemicylinders with headgroups oriented towards the solution. The magnitude of the zeta-potential increased with an increase in surfactant concentration, reaching a constant value at a concentration corresponding to the point of surface micelle formation as confirmed from AFM imaging. The streaming potential and electrophoretic mobility measurements showed that the zeta-potentials of SDS and CTAB surface micelles adsorbed at the graphite surface were about −75 and +70 mV, respectively, well in agreement with the values reported for bulk phase micelles in the literature.  相似文献   

19.
The physicochemical characterization of nanoparticles in suspension is a prerequisite for the adequate assessment of their potential biological effect. Little is known to date about the colloidal stability of TiO2 nanoparticles in cell culture medium. This study investigates the effect of particle concentration, ionic strength, pH, and the presence of fetal bovine serum (FBS) and human serum albumin (HSA) on the colloidal stability of TiO2 nanoparticles in RPMI cell culture medium, by sedimentation measurements, dynamic light scattering, and electrokinetic measurements (zeta-potential). TEM revealed that the particles were polydisperse, with diameters ranging from approximately 15 to approximately 350 nm. The agglomeration rate and sedimentation rate increased with particles' concentration. The size of the agglomerates at 100 mg/L TiO2 was significantly reduced, from 1620+/-160 to 348+/-13 and 378+/-15 nm, upon the addition of 10% (v/v) FBS and 1% (w/w) HSA, respectively. The isoelectric point of TiO2 in water was 2.9 and the measured zeta-potential in RPMI was -16+/-2 mV at pH 7.4. A slight increase in the zeta-potential of TiO2 in RPMI was observed upon the addition of FBS and HSA. The addition of FBS and HSA prevented high agglomeration, leading to a stable dispersion of TiO2 nanoparticles for at least 24 h, possibly due to steric stabilization of the particles.  相似文献   

20.
In the present work, the adsorption behavior at the liquid-air interface and micellization characteristics of mixtures of cetyltrimethylammonium bromide (CTAB) and p-(1,1,3,3-tetramethylbutyl) polyoxyethylene (TritonX-100) in aqueous media containing different concentrations of NaBr were investigated by surface tension and potentiometry measurements. From plots of surface tension (gamma) as a function of solution composition and total surfactant concentration, we determined the critical micelle concentration (CMC), minimum surface tension at the CMC (gamma(CMC)), surface excess (Gamma(max)), and mean molecular surface area (A(min)). On the basis of regular solution theory, the compositions of the adsorbed film (Z) and micelles (X(M)) were estimated, and then the interaction parameters in the micelles (beta(M)) and in the adsorbed film phase (beta(sigma)) were calculated. For all mole fraction ratios, the results showed synergistically enhanced ability to form mixed micelles as well as surface tension reduction. Furthermore beta was calculated by considering nonrandom mixing and head group size effects. It was observed that, for both the planar air/aqueous interface and micellar systems, the nonideality decreased as the amount of electrolyte in the aqueous medium was increased. This was attributed to a decrease of the surface charge density caused by increasing the concentration of bromide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号