首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
贾蒙 《计算物理》2014,31(4):495-504
研究离散动力系统双曲不动点的二维流形计算,利用不变流形轨道上Jacobian矩阵能够传递导数这一特殊性质,提出一种新的一维流形计算方法,通过预测-校正两个步骤迅速确定流形上新网格点,避免重复计算,并简化精度控制条件.在此基础上,将基于流形面Foliation条件进行推广,推广后的Foliation条件能够控制二维流形上的一维子流形的增长速度,从而实现二维流形在各个方向上的均匀增长.此外,算法可以同时用于二维稳定和不稳定流形的计算.以超混沌三维Hénon映射和具有蝶形吸引子的Lorenz系统为例验证了算法的有效性.  相似文献   

2.
张洪宪  赵珩 《光子学报》2008,37(8):1679-1683
从傍轴条件下光束轨道角动量的基本理论出发,根据高阶椭圆厄密–高斯光束的光场分布,运用张量方法,对高阶椭圆厄密-高斯光束轨道角动量的密度分布进行了理论分析,得到了求解该密度分布的计算公式,并在给定参量条件下作了数值模拟.进一步对光束中每个光子携带的平均轨道角动量进行了计算,发现其值随着椭圆厄密-高斯光束阶次的增大而增大,表明高阶椭圆厄密-高斯光束能够比椭圆高斯光束或拉盖尔-高斯光束提供高得多的轨道角动量.  相似文献   

3.
李清都  杨晓松 《物理学报》2010,59(3):1416-1422
提出了连续时间系统二维(不)稳定流形的一种新数值算法,不但可以快速地求得流形的直观图像,而且能够准确地获取流形上各点的位置、时间、轨道距离等丰富的信息,从而有利于人们从几何上去研究系统的全局行为,如边界特征、演化过程、奇异环等等.本算法首先通过解初值问题求出均匀分布的相邻轨道,然后连接这些轨道既得流形面.Lorenz系统原点的稳定流形的计算表明本算法快速有效.此外,通过试着寻找异宿轨道,还研究了一个三维神经网络中的混沌产生机理.  相似文献   

4.
李清都  谭宇玲  杨芳艳 《物理学报》2011,60(3):30206-030206
非线性系统的二维流形通常具有复杂几何结构和丰富动力学信息,因此在流形计算与可视化时存在大量的不可避免的数值计算.因此,如何高效地完成这些计算就成了关键问题.鉴于当今计算机的异构发展趋势(包含多核CPU和通用GPU),本文在兼顾精度和通用性的基础上,提出了适用于新一代计算平台的快速流形计算方法.本算法将计算任务分为轨道延伸和三角形生成两部分,前者运算量大而单一适合GPU完成,后者运算量小而复杂适合CPU执行.通过对Lorenz系统原点稳定流形的计算,表明本算法能充分发挥异构平台的综合性能,可大幅度提高计算速 关键词: 不稳定流形 流形计算 异构计算 Lorenz系统  相似文献   

5.
李慧敏  樊养余  孙恒义  张菁  贾蒙 《物理学报》2012,61(2):29501-029501
主要研究非线性映射函数双曲不动点的二维流形计算问题. 提出了推广的Foliation条件, 以此来衡量二维流形上的一维流形轨道的增长量, 进而控制各子流形的增长速度, 实现二维流形在各个方向上的均匀增长. 此外, 提出了一种一维子流形轨道的递归插入算法, 该算法巧妙地解决了二维流形面上网格点的插入、前像搜索, 以及网格点后续轨道计算问题, 同时插入的轨道不必从初始圆开始计算, 避免了在初始圆附近产生过多的网格点. 以超混沌三维Hénon映射和具有蝶形吸引子的Lorenz系统为例验证了算法的有效性.  相似文献   

6.
二维椭圆量子台球中的谱分析   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了二维椭圆台球中的量子谱和经典轨道之间的对应关系.为尝试求解没有解析波函数和本征能量又不能分离变量的体系,采用了定态展开方法(expansion method for stationary states,简称EMSS)得到尽可能精确的数值解,这是闭合轨道理论被推广到计算开轨道的情况.比较了傅里叶变换谱和经典轨道,发现量子谱的峰位置与经典轨道的长度在可分辨的范围内符合得很好,这是半经典理论为经典与量子力学的联系提供桥梁作用的又一个例子. 关键词: 椭圆量子台球 定态展开方法 闭合轨道理论 量子谱  相似文献   

7.
对地球的椭圆轨道方程进行近似处理,然后应用开普勒面积定律和季节长度计算其轨道偏心率.  相似文献   

8.
用高分辨率电子动量谱仪进行丁酮分子的结合能谱和内价轨道1a"电子动量谱的实验工作,以及用HartreeFock和密度泛函理论方法对1a"轨道电子动量谱的理论研究.得到了各价轨道的电离能值以及理论计算的总能、偶极矩和1a"轨道的二维密度图.并比较了内价轨道1a"的电子动量谱的实验和理论计算结果,实验结果与理论计算符合较好.  相似文献   

9.
通过掠面速度公式简洁地导出了行星沿椭圆轨道运动的时间表示式,分析了<大学物理>2007年第12期中<椭圆轨道上行星绕日运动时间计算>一文中存在的一个问题.  相似文献   

10.
以平方反比有心力作用下的椭圆轨道运动为例,文章基于开普勒第一、第二定律和牛顿的万有引力公式,配合有心力系统普遍适用的机械能守恒律,推演了平方反比有心力作用下的二体系统运动规律的一套初等的教学方案,而无需求解非线性的比耐(Binet)微分方程。用初等方法推导了椭圆轨道的能量与偏心率公式、圆轨道条件以及特征点的若干运动参数(速度及曲率半径)并给出了开普勒第三定律的一种新颖而简单的初等证明方法。  相似文献   

11.
We explore the approximation of attracting manifolds of complex systems using dimension reducing methods. Complex systems having high-dimensional dynamics typically are initially analyzed by exploring techniques to reduce the dimension. Linear techniques, such as Galerkin projection methods, and nonlinear techniques, such as center manifold reduction are just some of the examples used to approximate the manifolds on which the attractors lie. In general, if the manifold is not highly curved, then both linear and nonlinear methods approximate the surface well. However, if the manifold curvature changes significantly with respect to parametric variations, then linear techniques may fail to give an accurate model of the manifold. This may not be a surprise in itself, but it is a fact so often overlooked or misunderstood when utilizing the popular KL method, that we offer this explicit study of the effects and consequences. Here we show that certain dimensions defined by linear methods are highly sensitive when modeled in situations where the attracting manifolds have large parametric curvature. Specifically, we show how manifold curvature mediates the dimension when using a linear basis set as a model. We punctuate our results with the definition of what we call, a “curvature induced parameter,” dCI. Both finite- and infinite-dimensional models are used to illustrate the theory.  相似文献   

12.
In dissipative ordinary differential equation systems different time scales cause anisotropic phase volume contraction along solution trajectories. Model reduction methods exploit this for simplifying chemical kinetics via a time scale separation into fast and slow modes. The aim is to approximate the system dynamics with a dimension-reduced model after eliminating the fast modes by enslaving them to the slow ones via computation of a slow attracting manifold. We present a novel method for computing approximations of such manifolds using trajectory-based optimization. We discuss Riemannian geometry concepts as a basis for suitable optimization criteria characterizing trajectories near slow attracting manifolds and thus provide insight into fundamental geometric properties of multiple time scale chemical kinetics. The optimization criteria correspond to a suitable mathematical formulation of “minimal relaxation” of chemical forces along reaction trajectories under given constraints. We present various geometrically motivated criteria and the results of their application to four test case reaction mechanisms serving as examples. We demonstrate that accurate numerical approximations of slow invariant manifolds can be obtained.  相似文献   

13.
We describe an efficient algorithm for computing two-dimensional stable and unstable manifolds of three-dimensional vector fields. Larger and larger pieces of a manifold are grown until a sufficiently long piece is obtained. This allows one to study manifolds geometrically and obtain important features of dynamical behavior. For illustration, we compute the stable manifold of the origin spiralling into the Lorenz attractor, and an unstable manifold in zeta(3)-model converging to an attracting limit cycle. (c) 1999 American Institute of Physics.  相似文献   

14.
We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo system. These types of oscillations can be explained as a combination of relaxation oscillations and small-amplitude oscillations controlled by canard solutions that are associated with a folded singularity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical manifold for a range of parameters, and an associated folded singularity of node-type. Hence, there exist corresponding attracting and repelling slow manifolds that intersect in canard solutions. We present a general technique for the computation of two-dimensional slow manifolds (smooth surfaces). It is based on a boundary value problem approach where the manifolds are computed as one-parameter families of orbit segments. Visualization of the computed surfaces gives unprecedented insight into the geometry of the system. In particular, our techniques allow us to find and visualize canard solutions as the intersection curves of the attracting and repelling slow manifolds.  相似文献   

15.
《Physics letters. [Part B]》1987,186(2):173-179
We present a method for the computation of the renormalization group β-functions and the central charge in two-dimensional supersymmetric sigma models in a gravitational background. The two-loops results are exhibited. We use the Pauli-Villars regularization which preserves supersymmetry and permits an unambiguous treatment of the model with torsion. The central charge we derive for a general manifold is in agreement with the expression found on group manifolds.  相似文献   

16.
We consider diffusively coupled logistic maps in one- and two-dimensional lattices. We investigate periodic behaviors as the coupling parameter varies, i.e., existence and bifurcations of some periodic orbits with the largest domain of attraction. Similarity and differences between the two lattices are shown. For small coupling the periodic behavior appears to be characterized by a number of periodic orbits structured in such a way to give rise to distinct, reverse period-doubling sequences. For intermediate values of the coupling a prominent role in the dynamics is played by the presence of normally attracting manifolds that contain periodic orbits. The dynamics on these manifolds is very weakly hyperbolic, which implies long transients. A detailed investigation allows the understanding of the mechanism of their formation. A complex bifurcation is found which causes an attracting manifold to become unstable. (c) 1994 American Institute of Physics.  相似文献   

17.
We construct the non-compact Calabi-Yau manifolds interpreted as the complex line bundles over the Hermitian symmetric spaces. These manifolds are the various generalizations of the complex line bundle over CPN−1. Imposing an F-term constraint on the line bundle over CPN−1, we obtain the line bundle over the complex quadric surface QN−2. On the other hand, when we promote the U(1) gauge symmetry in CPN−1 to the non-abelian gauge group U(M), the line bundle over the Grassmann manifold is obtained. We construct the non-compact Calabi-Yau manifolds with isometries of exceptional groups, which we have not discussed in the previous papers. Each of these manifolds contains the resolution parameter which controls the size of the base manifold, and the conical singularity appears when the parameter vanishes.  相似文献   

18.
General two-dimensional Euclidean chiral models of field theory are considered in detail. It is shown that in the case when the field takes its values in an arbitrary Kähler manifold the “duality equations” reduce to the Cauchy- Riemann equations on this manifold. For homogeneous manifolds the solutions of these equations do exist and are given by rational functions.  相似文献   

19.
We present a computational method for determining the geometry of a class of three-dimensional invariant manifolds in non-autonomous (aperiodically time-dependent) dynamical systems. The presented approach can be also applied to analyse the geometry of 3D invariant manifolds in three-dimensional, time-dependent fluid flows. The invariance property of such manifolds requires that, at any fixed time, they are given by surfaces in R3. We focus on a class of manifolds whose instantaneous geometry is given by orientable surfaces embedded in R3. The presented technique can be employed, in particular, to compute codimension one (invariant) stable and unstable manifolds of hyperbolic trajectories in 3D non-autonomous dynamical systems which are crucial in the Lagrangian transport analysis. The same approach can also be used to determine evolution of an orientable ‘material surface’ in a fluid flow. These developments represent the first step towards a non-trivial 3D extension of the so-called lobe dynamics — a geometric, invariant-manifold-based framework which has been very successful in the analysis of Lagrangian transport in unsteady, two-dimensional fluid flows. In the developed algorithm, the instantaneous geometry of an invariant manifold is represented by an adaptively evolving triangular mesh with piecewise C2 interpolating functions. The method employs an automatic mesh refinement which is coupled with adaptive vertex redistribution. A variant of the advancing front technique is used for remeshing, whenever necessary. Such an approach allows for computationally efficient determination of highly convoluted, evolving geometry of codimension one invariant manifolds in unsteady three-dimensional flows. We show that the developed method is capable of providing detailed information on the evolving Lagrangian flow structure in three dimensions over long periods of time, which is crucial for a meaningful 3D transport analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号