首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the feasibility of employing the Hyperspherical Adiabatic (HA) basis set to describe continuum states of the Helium trimer molecule.  相似文献   

2.
We study small clusters of bosons, A = 2, 3, 4, 5, 6, characterized by a resonant interaction. Firstly, we use a soft-gaussian interaction that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with LM2M2 potential, a widely used 4He-4He interaction. We change the intensity of the potential to explore the clusters’ spectra in different regions with large positive and large negative values of the two-body scattering length and we report the clusters’ energies on Efimov plot, which makes the scale invariance explicit. Secondly, we repeat our calculation adding a repulsive three-body force to reproduce the trimer binding energy. In all the region explored, we have found that these systems present two states, one deep and one shallow close to the A ? 1 threshold, and scale invariance has been investigated for these states. The calculations are performed by means of Hyperspherical Harmonics basis set.  相似文献   

3.
The uniform method of numerical investigation of bound states and scattering processes 2→ 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2→ 2 (including the characteristics of the resonance states) are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
A new method for discretizing a three-body continuum with the aid of the L 2 basis of stationary wave packets is considered within the problem of three-body scattering. Substantial advantages of employing this basis in solving problems of few-body scattering are demonstrated. Specific applications of this approach are exemplified by exploring the problem of scattering of a composite particle on a heavy nucleus with allowance for the excitation of this particle to continuum states. This is done within two alternative approaches: a direct wave-packet discretization of a three-body continuum and a method that is based on the Feshbach projection formalism. It is shown explicitly that the resulting scattering amplitudes are convergent as the number of wave-packet states that are taken into account is increased. The results obtained here are compared with the results of other authors whose treatment was based on alternative methods for discretizing a continuum.  相似文献   

5.
In the present paper we determine the oscillator strength of two-dimensional (2D) D ions under the influence of a static magnetic field. The results are important for the analysis of the optical transitions observed in semiconductor quantum wells. We have applied the ab initio procedure Hyperspherical Adiabatic Approach, based on the use of hyperspherical coordinates. This approach uses an adiabatic separation of the total wave function that allows accurate energies determination from molecular-like potential curves. The convergence is obtained in a systematic way by the inclusion of non-adiabatic couplings without the need of adjustable parameters.  相似文献   

6.
 The quantum-mechanical three-body problem is reformulated in two dimensions by use of hyperspherical coordinates and an adiabatic expansion of the Faddeev equations. The effective radial potentials are calculated and their large-distance asymptotic behavior is derived analytically for short-range two-body interactions. Energies and wave functions are computed numerically for various potentials. An infinite series of Efimov states does not exist in two dimensions. Borromean systems, i.e. bound three-body systems without bound binary subsystems, can only appear when a short-range repulsive barrier at finite distance is present in the two-body interaction. The corresponding Borromean state is never spatially extended. For a system of three weakly interacting identical bosons we find two bound states with both binding energies proportional to the two-body binding energy. In the limit of small binding these states are spatially located at the very large distances characterized by the scattering length. Their properties are universal and independent of the details of the potential. We compare throughout with the corresponding properties in three dimensions. Received September 25, 1998; accepted for publication January 30, 1999  相似文献   

7.
In this work we investigate the structure and dynamics of small clusters of Helium atoms. We consider bound states of clusters having A = 2, 3, 4, 5, 6 atoms and continuum states in the three-atom system. Motivated by the fact that the He-He system has a very large scattering length a compared to the range r 0 of the He-He potential (r 0/a < 1/10), we propose the use of a soft-core interparticle potential. We use an attractive gaussian potential that reproduces the values of the dimer binding energy and the atomatom scattering length obtained with one of the widely used He-He interactions, the LM2M2 potential. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and a three-body potential, we show the spectrum of the four, five, and sixparticle systems and phase-shifts and inelasticities in the three-atom system. Comparisons to calculations using realistic He-He potentials are given. In addition some universal relations are explored.  相似文献   

8.
We present a computer simulation of exciton–exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al0.3Ga0.7As quantum well. From these bound and continuum states we extract the momentum-dependent phase shifts for s-wave scattering. A surprising finding of this work is that a commonly studied effective-mass model for excitons in a 10 nm quantum well actually supports two bound biexciton states. The second, weakly bound state may dramatically enhance exciton–exciton interactions. We also fit our results to a hard-disk model and indicate directions for future work.  相似文献   

9.
《Physics Reports》2001,347(5):373-459
The quantum mechanical three-body problem is studied for general short-range interactions. We work in coordinate space to facilitate accurate computations of weakly bound and spatially extended systems. Hyperspherical coordinates are used in both the interpretation and as an integral part of the numerical method. Universal properties and model independence are discussed throughout the report. We present an overview of the hyperspherical adiabatic Faddeev equations. The wave function is expanded on hyperspherical angular eigenfunctions which in turn are found numerically using the Faddeev equations. We generalize the formalism to any dimension of space d greater or equal to two. We present two numerical techniques for solving the Faddeev equations on the hypersphere. These techniques are effective for short and intermediate/large distances including use for hard core repulsive potentials. We study the asymptotic limit of large hyperradius and derive the analytic behaviour of the angular eigenvalues and eigenfunctions. We discuss four applications of the general method. We first analyze the Efimov and Thomas effects for arbitrary angular momenta and for arbitrary dimensions d. Second we apply the method to extract the general behaviour of weakly bound three-body systems in two dimensions. Third we illustrate the method in three dimensions by structure computations of Borromean halo nuclei, the hypertriton and helium molecules. Fourth we investigate in three dimensions three-body continuum properties of Borromean halo nuclei and recombination reactions of helium atoms as an example of direct relevance for the stability of Bose–Einstein condensates.  相似文献   

10.
In this work we show results for light nuclear systems and small clusters of helium atoms using the hyperspherical harmonics basis. We use the basis without previous symmetrization or antisymmetrization of the state. After the diagonalization of the Hamiltonian matrix, the eigenvectors have well defined symmetry under particle permutation and the identification of the physical states is possible. We show results for systems composed up to six particles. As an example of a fermionic system, we consider a nucleon system interacting through the Volkov potential, used many times in the literature. For the case of bosons, we consider helium atoms interacting through a potential model which does not present a strong repulsion at short distances. We have used an attractive gaussian potential to reproduce the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the most widely used He–He interaction, the LM2M2 potential. In addition, we include a repulsive hypercentral three-body force to reproduce the trimer binding energy.  相似文献   

11.
 We formulate the three-body problem in one dimension in terms of the (Faddeev-type) integral equation approach. As an application, we develop a spinless, one-dimensional (1-D) model that mimics three-nucleon dynamics in one dimension. Using simple two-body potentials that reproduce the deuteron binding, we obtain that the three-body system binds at about 7.5 MeV. We then consider two types of residual pionic corrections in the dynamical equation; one related to the 2π-exchange three-body diagram, the other to the 1π-exchange three-body diagram. We find that the first contribution can produce an additional binding effect of about 0.9 MeV. The second term produces smaller binding effects, which are, however, dependent on the uncertainty in the off-shell extrapolation of the two-body t-matrix. This presents interesting analogies with what occurs in three dimensions. The paper also discusses the general three-particle quantum scattering problem, for motion restricted to the full line. Received March 5, 2002; accepted July 19, 2002  相似文献   

12.
Tomio  L.  Yamashita  M. T.  Frederico  T.  Bringas  F. 《Laser Physics》2011,21(8):1464-1469
We present an approach to analyze recent experimental evidences of Efimov resonant states in mixtures of ultracold gases, by considering two-species three-body atomic systems bound in a Borromean configuration, where all the two-body interactions are unbound. For such Borromean three-body systems, it is shown that a continuum three-body s-wave resonance emerges from an Efimov state as a scattering length or a three-body scale is moved. The energy and width of the resonant state are determined from a scaling function with arguments given by dimension-less energy ratios relating the two-body virtual state subsystem energies with the shallowest three-body bound state. The peculiar behavior of such resonances is that their peaks are expected to move to lower values of the scattering length, with increasing width, as one raises the temperature. For Borromean systems, two resonant peaks are expected in ultralow-temperature regimes, which will disappear at higher energies. It is shown how a Borromean-Efimov excited bound state turns out to a resonant state by tuning the virtual two-body subsystem energies or scattering lengths, with all energies written in units of the next deeper shallowest Efimov state energy. The resonance position and width for the decay into the continuum are obtained as universal scaling functions (limit cycle) of the dimensionless ratios of the two and three-body scales, which are calculated numerically within a zero-range renormalized three-body model.  相似文献   

13.
S. Ishikawa 《Few-Body Systems》2007,40(3-4):145-163
We present a practical method to solve Faddeev three-body equations at energies above the three-body breakup threshold as integral equations in coordinate space. This is an extension of a previously used method for bound states and scattering states below three-body breakup threshold energy. We show that breakup components in three-body reactions produce long-range effects on Faddeev integral kernels in coordinate space, and propose numerical procedures to treat these effects. Using these techniques, we solve Faddeev equations for neutron-deuteron scattering to compare with benchmark solutions.  相似文献   

14.
A set of basis states for use in evaluating matrix elements of few-body system operators is suggested. These basis states are products of harmonic oscillator wave functions having as arguments a set of Jacobi coordinates for the system. We show that these harmonic oscillator functions can be chosen in a manner that allows such a product to be expanded as a finite sum of the corresponding products for any other set of Jacobi coordinates. This result is a generalization of the Talmi-Moshinsky transformation for two equal-mass particles to a system of any number of particles of arbitrary masses. With the help of our method the multidimensional integral which must be performed to evaluate a few-body matrix element can be transformed into a sum of products of three dimensional integrals. The coefficients in such an expansion are generalized Talmi-Moshinsky coefficients. The method is tested by calculation of a matrix element for knockout scattering for a simple three-body system. The results indicate that the method is a viable calculational tool.  相似文献   

15.
In this work, the Faddeev equations for three-body scattering at arbitrary angular momentum are exactly solved and the transition matrices for some transition processes, including scattering and rearrangement channels are formulated in terms of free-particle resolvent matrix. A generalized Yamaguchi rank-two nonlocal separable potential has been used to obtain the analytical expressions for partial wave scattering properties of a three-particle system. The partial-wave analysis for some transition processes in a three-particle system is suggested. The partial-wave three-particle transition matrix elements have been constructed via knowledge of the matrix elements of the free motion resolvent. The calculation of a number of scattering properties of interest of the system such as transition matrix and its poles (bound states and resonances) and consequently other related quantities like scattering amplitudes, scattering length, phase shifts and cross sections are feasible in a straightforward manner. Moreover, we obtain a new analytical expression for the third virial coefficient in terms of three-body transition matrix.  相似文献   

16.
In this work, the Faddeev equations for three-body scattering at arbitrary angular momentum are exactly solved and the transition matrices for some transition processes, including scattering and rearrangement channels are formulated in terms of free-particle resolvent matrix. A generalized Yamaguchi rank-two nonlocal separable potential has been used to obtain the analytical expressions for partial wave scattering properties of a three-particle system. The partial-wave analysis for some transition processes in a three-particle system is suggested. The partial-wave three-particle transition matrix elements have been constructed via knowledge of the matrix elements of the free motion resolvent.The calculation of a number of scattering properties of interest of the system such as transition matrix and its poles(bound states and resonances) and consequently other related quantities like scattering amplitudes, scattering length,phase shifts and cross sections are feasible in a straightforward manner. Moreover, we obtain a new analytical expression for the third virial coefficient in terms of three-body transition matrix.  相似文献   

17.
This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence of at least two Efimov states in 20C nucleus. These excited states move into the continuum as the two-body (core-neutron) binding energy is increased and show up as asymmetric resonances in the elastic scattering cross-section of the n-19C system. The Fano mechanism is invoked to explain the asymmetry. The calculations have been extended to 38Mg, 32Ne and a hypothetical case of a very heavy core (A = 100) with two valence neutrons. In all these cases the Efimov states show up as resonances as the two-body energy is increased. However, in sharp contrast, the Efimov states, for a system of three equal masses, show up as virtual states beyond a certain value of the two-body interaction.  相似文献   

18.
 We study the low-energy universality observed in three-body models through a scale-independent approach. From the already estimated infinite number of three-body excited energy states, which happen in the limit when the energy of the subsystem goes to zero, we are able to identify the lower energies of the helium trimers as possible examples of Thomas-Efimov states. By considering this example, we illustrate the usefulness of a scaling function, which we have defined. The approach is applied to bosonic systems of three identical particles, and also to the case where two kinds of particles are present. Received June 30, 1999; revised July 27, 1999; accepted for publication August 29, 1999  相似文献   

19.
20.
The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20C and other 2n halo nuclei. In particular, we calculate their matter form factors, radii, and two-neutron opening angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号