首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
分子连接性指数与溶液吸附自由能的相关性   总被引:2,自引:0,他引:2  
赵振国 《化学学报》1995,53(6):557-562
测定了硅胶自四氯化碳中吸附脂肪醇及活性炭自水中吸附芳香化合物的吸附等温线, 等温线均可用Langmuir方程描述。利用Langmuir参数计算了各体系的吸附标准自由能变化。计算了各种吸附质的分子连接性指数。各种分子的分子连接性指数与吸附标准自由能变化间有相关性, 并给出了相关方程, 同时作了初步的讨论。  相似文献   

2.
本工作利用硅胶自环己烷中附醇.酮.酯. 活性炭自环己烷中吸附芳香化合物的实验结果计算证明,这些化合物吸附的Henry常数K(K=n^s~m.b)~i,式中n^s~m. b 为Langmuir等温式中极限吸附量,b为与吸附热有关的常数,n~i为构成分子的i 结构单元的Henry常数,这一结果给出了在一定条件下预示吸附等温线的可能性.  相似文献   

3.
采用ZnCl_2活化法制备了枣核活性炭,研究了枣核活性炭对罗丹明B的吸附性能。采用低温氮气吸附脱附、FT-IR等方法对活性炭进行表征,结果显示,活性炭是中孔结构,中孔容为0.92cm~3/g,平均孔径为3.1 7nm,BET比表面积达1223.25m~2/g。研究了溶液初始浓度、吸附时间和活性炭质量浓度等因素对平衡吸附量的影响,以及罗丹明B在枣核活性炭上的吸附平衡与动力学。通过Langmuir等6种吸附等温模型对吸附数据进行拟合,结果表明,Redlich-Peterson模型能较好地描述罗丹明B在活性炭上的吸附平衡;动力学研究表明,该吸附过程符合Elovich模型。  相似文献   

4.
考察了沥青基球形活性炭(PSAC)对葡萄糖分子的吸附行为,以探讨其治疗糖尿病的可能性.在不同吸附时间、不同活性炭用量及不同浓度等条件下,测定沥青基球形活性炭对葡萄糖分子的吸附量,根据Langmuir和Freundlich等温线方程对吸附等温线数据进行拟合,检验实验数据与方程的吻合度,确定方程参数.同时,研究了葡萄糖和α-淀粉酶在沥青基球形活性炭上的竞争吸附行为.结果表明,所选用沥青基球形活性炭对葡萄糖分子的吸附在5h内达到吸附平衡;葡萄糖的初始浓度为3g/时,平衡吸附量为71mg/g;平衡吸附量受葡萄糖分子空间构象的影响,且随葡萄糖浓度的升高而增加,吸附等温线数据与Langmuir方程吻合,说明该吸附为单分子层吸附.在葡萄糖分子和α-淀粉酶的共存环境下,沥青基球形活性炭对葡萄糖有较好的吸附选择性.  相似文献   

5.
介孔吸附剂表面分形分析   总被引:8,自引:0,他引:8  
赵振国 《化学学报》2004,62(2):219-223
用自溶液中吸附的方法测定了介孔硅胶和活性炭的分形维数D.结果表明:(1)硅胶自四氯化碳或环已烷中吸附脂肪醇、酮、酯和含氧芳香化合物,活性炭自水中吸附芳香化合物的等温线均服从Langmuir方程.用极限吸附量nms和表观分子面积σa,根据方程log nms=-(D)/(2)log σa+常数,可计算出分维D. nms和σa是根据Langmuir方程和吸附剂比表面数据求出的.(2)用液相吸附法求出的介孔硅胶的分维值与由气体吸附法求出的值相同,并均近于2.当表面曲率半径大于吸附分子大小时,吸附剂表面可是低分维的.(3)由液相吸附法得到的介孔活性炭的分维也近似为2.可能的解释是,活化作用改变了原始炭的微孔结构,使其成为介孔和大孔.介孔活性炭也可是低分维表面.  相似文献   

6.
苯酚和苯胺在超高交联吸附树脂上的共吸附行为   总被引:12,自引:0,他引:12  
研究了水溶液中苯酚和苯胺在超高交联吸附树脂NDA103、NDA101、NDA100上的竞争吸附和协同吸附行为.实验结果表明,单组分苯酚或苯胺水溶液和双组分共存水溶液中吸附质分子在超高交联吸附树脂上的吸附等温线均符合Langmuir模型.当双组分摩尔比为1∶1时,在较低平衡浓度范围内苯酚和苯胺在树脂上呈现竞争吸附行为,其主导机制是两种吸附质分子对树脂内外表面上π-π作用吸附位点的直接竞争;而在较高平衡浓度范围内呈现协同吸附行为,其主导机制是两种吸附质分子之间的氢键作用.吸附温度由293K升至313K时,苯酚和苯胺在NDA103上的协同吸附作用加强,而在NDA101和NDA100上的协同吸附作用变化不明显.  相似文献   

7.
选用废弃咖啡渣在450℃下热解制备了活性炭(WCGAC)。利用元素分析、X射线衍射(XRD)和红外光谱(FTIR)分析了活性炭的结构与表面性质,并通过单因素实验考察了WCGAC对水中诺氟沙星(NOR)的吸附行为。结果表明,WCGAC投加量增加至2.6g·L-1后,去除率变化不大;对50mg·L-1NOR,吸附平衡时间为120min; pH在3~5的范围内,NOR去除率较高,保持在98%以上;溶液初始浓度增加则去除率下降。WCGAC呈现类石墨结构,吸附过程符合准二级动力学方程和Langmuir等温模型,其最大平衡吸附量为45.96mg·g-1,属于单分子层化学吸附。氢键作用、π-π共轭和离子交换可能是WCGAC吸附NOR的重要机制。  相似文献   

8.
采用失重法和电化学方法研究了BIT, BIOHT和BIMMT三种席夫碱基四唑类化合物对铜在质量分数为5%的NaHCO3水溶液中的缓蚀性能和吸附行为. 结果表明, 在NaHCO3水溶液中三种化合物对铜均有较好的缓蚀作用, 三种化合物的缓蚀性能大小顺序为BIMMT>BIOHT>BIT. 三种化合物在铜表面上的吸附过程为放热过程, 其在铜表面上的吸附行为服从Langmuir吸附等温式, 属于物理吸附.  相似文献   

9.
改性活性炭对噻吩的吸附性能研究   总被引:1,自引:0,他引:1  
用过硫酸铵、臭氧对椰壳活性炭和煤基活性炭进行氧化改性,研究了改性活性炭对噻吩的吸附性能,材料结构袁征结果表明,经两种方法氧化处理后,椰壳炭的孔结构基本保持不变,而煤基炭的比表面积和孔容有所增加.Boehm滴定发现氧化后活性炭表面含氧官能团数量增加并由FT-TR图谱得到证实.氧化处理提高了噻吩在活性炭表面的吸附容量与Langmuir和Freundlich两种吸附等温线方程的相关性.采用拟一级、拟二级和粒子内扩散模型速率方程来考察吸附动力学,并计算了这些动力学模型的速率常数,拟二级模型和实验数据之间有较好的相关性.同时对影响吸附性能的因素进行了分析.  相似文献   

10.
采用水热合成法成功制备了氧化锆-活性炭纤维复合材料,并研究了其对F-的吸附行为。表征结果表明,复合材料中氧化锆粒子成功负载于活性炭纤维上。吸附实验结果表明,负载了氧化锆的活性炭纤维对F-有高效的去除效率,其吸附机理包括离子交换和静电作用力,吸附等温线符合Langmuir等温吸附模式,吸附动力学可用拟二级动力学模型拟合。吸附量随着溶液pH的升高而降低,共存离子Cl-、NO3-和SO42-对F-在氧化锆-活性炭纤维复合材料上的吸附几乎没有影响。  相似文献   

11.
The adsorption of organic compounds in aqueous solution on polymeric nanofiltration membranes is studied; this process is one of the most important fouling mechanisms influencing the flux and retention behavior of nanofiltration membranes. It is shown that the adsorption of dissolved organic compounds on polymeric nanofiltration membranes is comparable to that on activated carbon. Freundlich and Langmuir isotherms are used to describe the relation between the adsorbed mass on the membrane and the equilibrium concentration of the organic compound in a single-compound solution. Based on these results, three models for the adsorption of solutions containing several compounds [i.e., the simple competitive adsorption model (SCAM), the model of Jain-Snoeyinck, and the model of Butler-Ockrent] were used to predict the adsorption behavior of an organic compound in an aqueous solution containing two compounds. The results of the three models were compared to experimental observations. It is shown that the SCAM allows a good prediction of the adsorption behavior.  相似文献   

12.
The process of adsorption of two dissociating and two non-dissociating aromatic compounds from dilute aqueous solutions on an untreated commercially available activated carbon (B.D.H.) was investigated systematically. All adsorption experiments were carried out in pH controlled aqueous solutions. The experimental isotherms were fitted into four different models (Langmuir homogenous Models, Langmuir binary Model, Langmuir-Freundlich single model and Langmuir-Freundlich double model). Variation of the model parameters with the solution pH was studied and used to gain further insight into the adsorption process. The relationship between the model parameters and the solution pH and pKa was used to predict the adsorption capacity in molecular and ionic form of solutes in other solution.A relationship was sought to predict the effect of pH on the adsorption systems and for estimating the maximum adsorption capacity of carbon at any pH where the solute is ionized reasonably well.N2 and CO2 adsorption were used to characterize the carbon. X-ray Photoelectron Spectroscopy (XPS) measurement was used for surface elemental analysis of the activated carbon.  相似文献   

13.
Sorption isotherms for trifluoromethane (R-23) in activated carbon have been measured at ca. 298 and 323 K using a gravimetric microbalance. High-resolution TEM images of the activated carbon show a very uniform microstructure with no evidence of any contaminants. The adsorption in the activated carbon reaches about 22.8 mol kg?1 at 2.0 MPa and 298 K or 17.6 mol kg?1 at 2.0 MPa and 323 K. Three different adsorption models (Langmuir, multi-site Langmuir, and BET equations) have been used to analyze the activated carbon sorption data, with a particular interest in the heat of adsorption (?ΔH). The heat of adsorption for R-23 in the activated carbon was about 29.78 ± 0.04 kJ mol?1 based on the multi-site Langmuir model and is within the range of typical physical adsorption. According to the IUPAC classification, the activated carbon exhibits Type I adsorption behavior and was completely reversible. Compared with our previous work for the sorption of R-23 in zeolites (5A (Ca,Na-A), 13X (Na-X), Na,K-LSX, Na-Y, K,H-Y, Rb,Na-Y) and ionic liquids ([omim][TFES] and [emim][Tf2N]) the activated carbon had the highest adsorption capacity. The adsorption process in the activated carbon also took less time than in the zeolites or the ionic liquids to reach thermodynamic equilibrium.  相似文献   

14.
Granular activated carbon (GAC) and more recently activated carbon fibers (ACF) are used for the treatment of volatile organic compounds (VOC) in industrial processes. The purpose of this study was to investigate the adsorption kinetics of ACF to eliminate VOC from polluted air. This approach is carried out by modeling experimental breakthrough curves with two kinds of models: an equilibrium model and a mass transfer model based on a linear driving force (LDF) in conjunction with the Langmuir equilibrium model. The results show the influence of the intraparticle diffusion on the adsorption kinetics of ACF, in spite of their small fiber diameter. Moreover, external diffusion kinetics is fast because of the influence of the large external surface area of ACF on the VOC mass transfer.  相似文献   

15.
The present work was mainly focused on the single and binary adsorption of methylene blue(MB) and methyl orange(MO) from alcohol aqueous solution over rice husk based activated carbon(RHAC). The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO, indicating that it was a single layer adsorption. The adsorption behavior conformed to the pseudo-second-order kinetic model. The binary dye adsorption experiments showed that the Langmuir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO. Comparation with the single dye system, the adsorption capacity on the binary dye system was larger, and there was "competitive adsorption" and "synergistic adsorption" effects existed. Meanwhile, the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.  相似文献   

16.
The results presented in this work are related to the design of a guideline to develop specific properties at the surface of an activated carbon (AC). For this, two model aromatic compounds have been synthesized and their electrolytic behavior in aqueous solutions was studied by a potentiometric method. The textural characteristics of the activated carbon were determined by porosimetry methods. The nature of oxygen-carrying functions and the acid-base behavior of the AC surface were characterized by TPD and potentiometric titration methods, respectively. The adsorption and desorption equilibria of the aromatic compounds on activated carbon were measured in aqueous solutions, and the hysteresis between adsorption and desorption, which reveals irreversible adsorption, was discussed on the basis of the frontier orbital theory. HOMO and LUMO orbitals of the adsorbent and adsorbates were calculated, and irreversible adsorption was attributed to the small energy difference between HOMO and LUMO of the aromatic adsorbates and the adsorbent. Adsorption equilibria of K2CrO4 in aqueous solution on the AC alone and on the AC-aromatic ligand adsorbents, respectively, prove the efficient development of specific chemical functions at the carbon surface provided by the adsorbed aromatic compounds.  相似文献   

17.
The adsorption behavior of activated carbon (AC) prepared from the residue of diosgenin by-product was characterized. The adsorption capacities of AC such as iodine, phenol and methylene blue (MB) are 933.28, 145.38 and 165 mg/g, respectively. The results of MP analysis and BJH method show AC has developed micropore and mesopore volumes, which are 0.1621 and 0.2623 cm3/g respectively, with the mean pore diameter of 1.49 nm. Comparison of the liquid phase adsorption capacities of AC to the standard activated carbon (SAC) and the commercial activated carbon (CAC) for wastewater treatment showed AC was superior to SAC and CAC. Experiments on phenol and MB adsorption and COD and chroma removal from diosgenin wastewater were carried out under different conditions of contact time, temperature, concentration, adsorbent dose and pH. The removal of COD and chroma of 10-multiple wastewater is 92.46 mg/g and 88 %, respectively. Adsorption parameters for the Langmuir and Freundlich isotherm models were determined. At lower temperatures, the data for phenol and COD fitted Freundlich model better than Langmuir model and vise versa for MB and chroma. Adsorption followed second-order kinetics. The study proves that AC prepared from the residue of diosgenin by-product can be used as adsorbent for the treatment of diosogenin wastewater as a cost-effective approach of resource recycle of Discorea zingiberensis C.H. Wright.  相似文献   

18.
介孔碳CMK-3对苯酚的吸附动力学和热力学研究   总被引:14,自引:0,他引:14  
研究了介孔碳CMK-3对苯酚的吸附性能, 与传统商用活性碳(CAC)进行了比较, 结果表明, CMK-3比CAC的吸附量大、吸附速率快、达到平衡时间短, 是一种较好的吸附剂. 同时探讨了介孔碳CMK-3对苯酚的吸附热力学和动力学特征. CMK-3对苯酚的吸附行为可用Langmuir和Freundlich等温式进行描述, 相关性都较好, 但更符合Freundlich经验公式. 分别采用模拟一阶反应和二阶反应模型考察了吸附动力学, 并计算了这些动力学模型的速率常数. 模拟二级反应模型和实验数据之间有较好的相关性. 分别计算了热力学参数ΔG0, ΔS0和ΔH0, 结果表明, CMK-3对苯酚的吸附过程是吸热和自发的.  相似文献   

19.
Steam activated carbons from oil-palm shells were prepared and used in the adsorption of phenol. The activated carbon had a well-developed mesopore structure which accounted for 45% of the total pore volume. The BET surface area of the activated carbon was 1183 m2/g and a total pore volume of 0.69 cm3/g using N2 adsorption at 77 K. The adsorption capacity of the activated carbon for phenol was 319 mg/g of adsorbent at 298 K. The adsorption isotherms could be described by both the Langmuir-Freundlich and the Langmuir equations. The adsorption kinetics consisted of a rapid initial uptake phase, followed by a slow approach to equilibrium. A new multipore model is proposed that takes into account of a concentration dependent surface diffusion coefficient within the particle. This model is an improvement to the traditional branched pore model. The theoretical concentration versus time curve generated by the proposed model fitted the experimental data for phenol adsorption reasonably well. Phenol adsorption tests were also carried out on a commercial activated carbon known as Calgon OLC Plus 12×30 and the agreement between these adsorption data and the proposed model was equally good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号