共查询到20条相似文献,搜索用时 15 毫秒
1.
Aamar Abbasi Waseh Farooq M Ijaz Khan Sami Ullah Khan Yu-Ming Chu Zahid Hussain M Y Malik 《理论物理通讯》2021,73(9):95004
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc. 相似文献
2.
Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface 下载免费PDF全文
Noor Wali Khan Arshad Khan Muhammad Usman Taza Gul Abir Mouldi and Ameni Brahmia 《中国物理 B》2022,31(6):64403-064403
Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices. Thin films are reasonably hard and thermally stable but quite fragile. The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles. In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work. The flow is affected by variations in the viscous forces, along with viscous dissipation effects and Marangoni convection. A time-constrained magnetic field is applied in the normal direction to the flow system. The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables. The homotopy analysis method is employed to find the solution to the resultant equations. It is noticed in this study that the flow characteristics decline with augmentation of magnetic, viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters. Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number. The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form. A comparison of current work with established results is carried out, with good agreement. 相似文献
3.
Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface 下载免费PDF全文
The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip.Two types of base fluids namely water and kerosene are selected with Cu nanoparticles.The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations.These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple.Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs.Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids.Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid.In order to authenticate our present study,the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case. 相似文献
4.
Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field 下载免费PDF全文
Dielectrophoresis (DEP) technology has become important application of microfluidic technology to manipulate particles. By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP, our group proposed a device using a direct current (DC) electric field to achieve continuous particle separation. In this paper, the influence of the Joule heating effect on the continuous separation of particles is analyzed. Results show that the Joule heating effect is caused by the local electric field, and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage. Moreover, a non-uniform temperature distribution exists in the channel due to the Joule heating effect, and the temperature is the highest at the midpoint of the modulating electrodes. The channel flux can be enhanced, and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect. In addition, the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect; and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect. The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux. Parameter optimization of the separation device, such as the convective heat transfer coefficient of the channel wall, the length of modulating electrode, and the width of the channel, is performed. 相似文献
5.
Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects 下载免费PDF全文
This paper presents the buoyancy effects on the magneto-hydrodynamics stagnation point flow of an incompressible,viscous,and electrically conducting nanofluid over a vertically stretching sheet.The impacts of an induced magnetic field and viscous dissipation are taken into account.Both assisting and opposing flows are considered.The overseeing nonlinear partial differential equations with the associated boundary conditions are reduced to an arrangement of coupled nonlinear ordinary differential equations utilizing similarity transformations and are then illuminated analytically by using the optimal homotopy investigation strategy(OHAM).Graphs are introduced and examined for different parameters of the velocity,temperature,and concentration profile.Additionally,numerical estimations of the skin friction,local Nusselt number,and local Sherwood number are explored using numerical values. 相似文献
6.
The candid intension of this article is to inspect the heat and mass transfer of a magnetohydrodynamic tangent hyperbolic nanofluid. The nanofluid flow has been assumed to be directed by a wedge on its way. In addition, the collective stimulus of the convective heating mode with thermal radiation is inspected. The governing set of PDEs is rendered into that of the coupled nonlinear ODEs. The resulting ordinary differential equations are then solved by the well known shooting technique for two different cases; the flow over a static wedge and flow over a stretching wedge. The impact of intricate physical parameters on the velocity, temperature and concentration profiles is analyzed graphically. It is noticed that the intensifying values of the generalized Biot number, Brownian motion parameter, thermophoresis parameter and Weissenberg number enhances the dimensionless temperature profile. 相似文献
7.
8.
M. Ijaz Khan Sumaira Qayyum T. Hayat M. Imran Khan A. Alsaedi Tufail Ahmad Khan 《Physics letters. A》2018,382(31):2017-2026
In this communication, an optimization of entropy generation is performed through thermodynamics second law. Tangent hyperbolic nanomaterial model is used which describes the important slip mechanism namely Brownian and thermophoresis diffusions. MHD fluid is considered. The novel binary chemical reaction model is implemented to characterize the impact of activation energy. Nonlinear mixed convection, dissipation and Joule heating are considered. Appropriate similarity transformations are implemented to get the required coupled ODEs system. The obtained system is tackled for series solutions by homotopy method. Graphs are constructed to analyze the impact of different flow parameters on entropy number, nanoparticle volume concentration, temperature and velocity fields. Total entropy generation rate is calculated via various flow variables. It is noticed from obtained results that entropy number depend up thermal irreversibility, viscous dissipation and Joule heating irreversibility and concentration irreversibility. Decreasing behavior of concentration is witnessed for higher estimations of chemical reaction variable. Entropy number is more for higher Hartmann number, Weissenberg number and chemical reaction variable while contrast behavior is noted for Bejan number. 相似文献
9.
The current mathematical model explains the influence of non-linear thermal radiation on the Casson liquid flow over a moving thin needle by considering Buongiorno's nanofluid model.The influences of Stefan blowing, Dufour and Soret effects are also considered in the model. The equations which represent the described flow pattern are reduced to ordinary differential equations(ODEs) by using apt similarity transformations and then they are numerically solved with Runge–Kutta-Fehlberg's fourth fifth-order method(RKF-45) with shooting process. The impacts of pertinent parameters on thermal, mass and velocity curves are deliberated graphically.Skin friction, rate of heat and mass transfer are also discussed graphically. Results reveal that, the increase in values of Brownian motion, thermophoresis, Dufour number, heating and radiative parameters improves the heat transfer. The increasing values of the Schmidt number deteriorates the mass transfer but a converse trend is seen for increasing values of the Soret number. Finally,the escalating values of the radiative parameter decays the rate of heat transfer. 相似文献
10.
Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction 下载免费PDF全文
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case. 相似文献
11.
The paper aims to investigate the unsteady natural convection flow and heat transfer of fractional Maxwell viscoelastic nanofluid in magnetic field over a vertical plate. The effect of nanoparticle shape is first introduced to the study of fractional Maxwell viscoelastic nanofluid. Fractional shear stress and Cattaneo heat flux model are applied to construct the governing boundary layer equations of momentum and energy, which are solved numerically. The quantities of physical interest are graphically presented and discussed in detail. It is found that particle shape and fractional derivative parameters have profound influence on the flow and heat transfer. 相似文献
12.
Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary.A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here. 相似文献
13.
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. HeatMass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter ~, solid volume fraction tp, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter. 相似文献
14.
A numerical investigation is performed to study the MHD free convection flow past a semi-infinite inclined plate subjected
to a variable surface temperature. The Joule heating and viscous dissipation effects are taken into account in the energy
equation. The governing equations of the flow are transformed into a nondimensional form using suitable dimensionless quantities.
A fully developed implicit finite-difference scheme of Crank-Nicolson type is engaged to solve the dimensionless governing
equations, which is more accurate, fast convergent, and unconditionally stable. The effects of the MHD, inclination angle,
power law, Grashof number, Prandtl number, Joule heating, and viscous dissipation effects are studied on the velocity, temperature,
shear stress, and heat transfer coefficients during transient periods. It is observed that the MHD has retarding effects on
velocity. 相似文献
15.
This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration of nanoparticles are given due attention. The resulting nonlinear problems are computed for analytic and numerical solutions. The effects of Brownian motion and thermophoretic property are found to increase the temperature of the medium and reduce the heat transfer rate. The thermophoretic property thus enriches the concentration while the Brownian motion reduces the concentration of the nanoparticles in the fluid. Opposite effects of these properties are observed on the Sherwood number. 相似文献
16.
Nanofluids are forthcoming new generation heat transfer fluids, which have been scrutinized precisely, in current years. Thermophysical assets of these fluids have noteworthy impact on their heat transfer features. In this current investigation a mathematical relation for two dimensional (2D) flow of magnetite Maxwell nanofluid influenced by a stretched cylinder is established. To visualize the stimulus of Brownian moment and thermophoresis phenomena on Maxwell fluid Buongiorno's relation has been considered. Moreover, heat sink/source and convective condition are also presented for heat transport mechanism. The homotopic scheme has been developed for the solutions of nonlinear ordinary differential equations (ODEs). The achieved outcomes are planned and consulted in aspects for somatic parameters. It is noteworthy that the velocity of Maxwell fluid display conflicting performance for curvature parameter and Deborah number. It is also reported that the liquid velocity decays for magnetic parameter, whereas the nanoliquid temperature and concentration field enhance for magnetic parameter. Furthermore, the liquid temperature intensifies for the progressive values of thermophoresis parameter and Brownian motion. Additionally, endorsement of current significances is organized via benchmarking with earlier famous limiting situations and we pledge a marvelous communication with these outcomes. 相似文献
17.
The main interest of the present work is to fundamentally investigate the flow characteristics and heat transfer of a hybrid Cu-Al2O3/water nanofluid due to a radially stretching/shrinking surface with the mutual effects of MHD, suction and Joule heating. The surface is permeable to physically allow the wall mass fluid suction. Tiwari and Das model of nanofluid is used with the new thermophysical properties of hybrid nanofluid to represent the problem. A similarity transformation is adopted to convert the governing model (PDEs) into a nonlinear set of ordinary differential equations (ODEs). A bvp4c solver in MATLAB software is employed to numerically compute the transformed system. The numerical results are discussed and graphically manifested in velocity and temperature profiles, as well as the skin friction coefficient and heat transfer rate with the pertinent values of the dimensionless parameters namely magnetic, Cu volume fraction, suction and Eckert number. The Eckert number has no impact on the boundary layer separation while the higher value of the suction parameter may affect the heat transfer performance. The presence of dual solutions (first and second) is seen on all the profiles within a limited range of the physical parameters. The stability analysis is executed, and it is validated that the first solution is the real solution. 相似文献
18.
在光透过性的流体介质中添加具有高光响应特性的纳米颗粒,可以形成光驱动纳米流体,实现对光能的高效利用.本文针对光驱纳米流体流动行为开展实验观察和理论分析研究,这是实现光驱纳米流动精确调控的理论基础.首先利用粒子图像测速技术对液滴中直径为300 nm的Fe3O4颗粒在不同光源照射下受Marangoni效应诱导的运动进行了实验观测,研究光能向动能的高效转化机制.实验结果表明,当颗粒浓度大于临界数密度时,可诱导出垂向具有对称结构的涡,在液滴底部颗粒由四周向中心运动,顶部则由中心向四周运动,光源频率和颗粒数密度是这一过程的主导因素.随后,针对光强高斯分布的紫外光驱动下大颗粒数密度、特征流速约mm/s的光驱纳米流体,通过Stokes方程和表面张力梯度边界条件实现了其流场分布的解析求解,理论获得的流场分布解析解与实验测量结果保持一致,证实定量理论分析的有效性.最后,讨论了引入表面张力与在液滴底部引入表面压力及体相中集中引入光辐射力的不同驱动模式之间的相关性.这一研究成果为光微流控系统中流动行为的精确调控及光能的高效转化等提供了理论支持. 相似文献
19.
Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity 下载免费PDF全文
Ahmed M. Megahed 《中国物理 B》2013,(9):480-485
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases. 相似文献
20.
This study aims to unfold the significance of numerous physical parameters such as magnetic field, heat absorption, thermal radiation, viscous and Joule dissipations, etc. on the flow of graphene Maxwell nanofluid over a linearly stretched sheet with considerations of momentum and thermal slip conditions. The prevailing mathematical equations are reformed into extremely nonlinear coupled ordinary differential equations (ODE) utilizing similarity variables and then the equations are solved numerically by the scheme of Runge-Kutta Fehlberg method along with the shooting technique. The variations in graphene Maxwell nanofluid velocity and temperature owing to different physical parameters are shown via numerous graphs whereas numerical values of skin friction coefficients and Nusselt numbers are illustrated and reported in different tables. In addition, statistical approach is followed for the multiple regression estimation analysis on the numerical findings of wall velocity gradient and local Nusselt number and are reported in tabular form to demonstrate the relationship among the heat transfer rate and physical parameters. Our results reveal that the graphene Maxwell nanofluid velocity gets reduced owing to enhancement in magnetic field, angle of inclination of magnetic field, porosity and unsteadiness parameters whereas behavior of nanofluid velocity is reversed due to Maxwell parameter. Further, it is noticed that the heat transfer rate of nanofluid is augmented owing to heat absorption, radiation and thermal slip parameters while it is reduced due to increase in viscous dissipation and unsteadiness parameters. The numerical results of the paper are validated by making comparisons with the earlier published paper under the restricted conditions and we found an excellent agreement with those results. A careful review of research papers reported in literature reveals that none of the authors has attempted this problem earlier although the thoughts and methodology explained in this paper can be anticipated to lead to enormously prolific connections across disciplines. 相似文献