首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
采用分子动力学方法模拟CH4/CO2混合气体在多孔石墨烯分离膜中的分离过程, 分析了3 种纳米孔功能化修饰(N/H 修饰、全H修饰和N/―CH3修饰)对分离过程的影响规律. 模拟结果表明气体分子会在石墨烯表面形成吸附层, CO2分子的吸附强度高于CH4分子. 纳米孔的功能化修饰不仅减小了纳米孔的可渗透面积, 还通过影响纳米孔边缘原子的电荷分布提高了气体分子的吸附强度, 进而影响了混合气体分子在多孔石墨烯分离膜中的渗透性和选择性. CO2分子在多孔石墨烯中的渗透率能达到106 GPU (1 GPU=3.35×10-10 mol·s-1·m-2·Pa-1), 远远高于传统的聚合物分离膜. 研究表明多孔石墨烯分离膜在天然气处理、CO2捕获等工业气体分离过程中具有广泛的应用前景.  相似文献   

2.
利用密度泛函理论研究了气体分子(NH3, H2O, H2S, NO2)吸附在二维M3(HIB)2(M=Ni, Cu; HIB为六亚氨基苯)薄膜上体系的几何结构和电子结构的变化. 结果表明, 2种薄膜对气体分子的响应不同. 其中NH3, H2O和H2S在M3(HIB)2薄膜表面的吸附较弱, 主要与薄膜的亚氨基形成氢键, 吸附能均小于-0.36 eV, 吸附对体系电子性质的影响很小. 但是 NO2分子在薄膜表面形成化学吸附, 吸附能在-0.65~-1.72 eV范围内. 吸附NO2分子使其电子结构发生明显改变, 如Cu3(HIB)2在费米能级处打开带隙, 由金属性质转变为半导体性质. 这是由于NO2分子的pz轨道与金属原子$d_{z}^{2}$ 轨道发生了强烈的轨道杂化. 此外, 研究发现高浓度的NO2分子吸附能够使Ni3(HIB)2薄膜由非磁性变为磁性体系, 由普通金属性质变为半金属性质; 而高浓度的NO2分子使Cu3(HIB)2薄膜由金属性质变为半导体性质, 薄膜电导率降低.  相似文献   

3.
使用SnCl2和SnCl4的乙醇溶液作为锡源,应用超声喷雾热解法制备了SnO2薄膜,考察了不同氧化剂用量和衬底预热处理对薄膜结构和性能的影响。使用X-射线衍射仪及扫描电子显微镜对薄膜进行结构及表面形貌分析,使用紫外分光光度计和四探针测试仪分析薄膜的光电性能。结果表明,SnCl2作为锡源,加入10%氧化剂,衬底在800℃条件下预热处理后制备出的SnO2薄膜,透过率高达90%,方块电阻为7.32Ω/□,电阻率为1.93×10-3Ω·cm的,达到了透明导电薄膜的要求。  相似文献   

4.
用有机光敏染料敏化半导体,通过染料分子的吸附功能基团与半导体相互作用,使染料分子与半导体表面之间建立电性耦合,进行有效的电荷转移,可以形成有机-半导体复合新型光电功能材料。联吡啶钌络合物有较强的可见光吸收、氧化还原性能可逆、氧化态稳定性高,是一类性能优越的有机光敏染料。近来许多研究发现,羧酸联吡啶钌的强吸附与TiO2纳晶薄膜的大比表面相结合,导致光生电荷快速注入TiO2导带达到有效的电荷分离,得到了接近100%的单色光光电流效率[1]。为研究联吡啶钌分子的不同吸附功能基团与TiO2纳晶薄膜表面的相互作用对提高光电性能的影响,本文报道苯基磷酸取代的联吡啶钌络合物敏化纳晶多孔TiO2薄膜的光电性能。  相似文献   

5.
孙成珍  白博峰 《物理化学学报》2018,34(10):1136-1143
二维石墨烯纳米孔中气体分子的选择性渗透对多孔石墨烯分离膜非常重要。本文采用分子动力学方法研究了气体分子在氮氢修饰石墨烯纳米孔中的渗透特性,从分子的大小和结构、纳米孔的构型以及分子与石墨烯之间的作用强度等角度阐明了分子出现选择性渗透的原因。结果表明,不同分子的渗透率不同,即H2O>H2S>CO2>N2>CH4。渗透率跟分子的质量和直径以及分子在石墨烯表面上的吸附密度有关;根据气体分子动理学理论,渗透率跟分子质量成反比关系;而分子在石墨烯表面上的高吸附密度对渗透起促进作用。对于H2O和CH4分子,分子直径起主导作用;H2O分子直径最小,其渗透率最大;同理,CH4分子的渗透率最小。对于H2S和CO2分子,H2S分子的直径较大,但其与石墨烯之间的作用强度较大(吸附密度较高),导致渗透率较高;对于CO2和N2分子,CO2分子的直径较小,并且与石墨烯之间的作用强度较大,渗透率较高。同时发现,分子在纳米孔中的渗透使得其在石墨烯表面的密度分布极不均匀。纳米孔左右两侧的功能化氮原子使CH4分子容易从孔两侧区域穿过,而其它分子由于直径较小在纳米孔中心区域穿过的概率最大。分子与石墨烯之间的作用越强,导致分子在石墨烯表面区域内停留的时间越长,最终使其在渗透纳米孔的过程中所经历的时间越长。本文所采用的氮氢修饰石墨烯纳米孔中,分子渗透速率达到~10-3 mol·s-1·m-2·Pa-1,并且其它分子相对于CH4分子的选择性也很高,说明基于该类型纳米孔的多孔石墨烯分离膜在天然气处理等工业气体分离领域具有很好的应用前景。  相似文献   

6.
石墨烯是一种新型二维晶体材料,它独特的单原子层结构显示出许多优异的物理化学性质。以石墨烯为原料制备的透明导电薄膜继承了石墨烯的优点,与氧化铟锡(ITO)薄膜相比,具有更好的力学强度、透光性以及化学稳定性,已逐渐成为全世界范围内的研究热点。本文首先介绍了石墨烯的光电性能,然后分别从石墨烯透明导电薄膜的前驱体和制备方法两个不同的角度,归纳总结了最近几年石墨烯透明导电薄膜的研究进展,就目前所面临的问题进行了讨论,并展望了石墨烯透明导电薄膜的未来发展。  相似文献   

7.
以Li2CO3和SiO2为原料,通过高温固相合成法合成了CO2捕集剂Li4SiO4,并用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)对所合成的材料在CO2捕集前后的晶相变化以及微观结构进行了表征。通过热重分析仪(TGA)研究了Li4SiO4材料吸附CO2的性能,并在小型热态实验台架上进行了CO2热态捕集实验。实验结果表明,Li4SiO4对CO2的捕集性能受Li4SiO4合成温度、CO2的吸附温度以及气体中CO2含量的影响,在700 ℃下制得的Li4SiO4具有最佳的CO2吸附特性,最大吸附增量可达34%。Li4SiO4的吸附能力随着CO2含量和吸附时间的增加而增加,当CO2浓度分别为75%、67%、60%时,700 ℃ Li4SiO4对CO2最大吸附量分别可达6.68 mmol/g、3.37 mmol/g、2.02 mmol/g (理论量8.33 mmol/g)。  相似文献   

8.
应用基于密度泛函理论的第一性原理方法研究过渡金属钇(Y)修饰对石墨烯储氢性能的影响。考虑Y原子在石墨烯上易形成团簇,采用B原子掺杂有效阻止了团簇形成。通过模拟计算得到的改性体系稳定、储氢性能优异,可吸附6个H2分子,平均吸附能范围为-0.539到-0.655 eV (per H2),理论上满足理想的氢吸附能范围。经Bader电荷初步计算和基于Y/B/graphene (G)体系吸附H2分子的电子态密度及电荷差分密度图分析得,Y原子与石墨烯间通过电荷转移产生结合,与H2分子则发生典型的Kubas型相互作用。Y原子改变了H2分子与石墨烯基的电荷分布,成为连接两者电子云的桥梁,从而增强了H2分子的吸附能。改性石墨烯体系吸附的均为氢分子,有利于在环境温度和压力条件下进行循环控制,是具有良好发展前景的储氢材料之一。  相似文献   

9.
采用巨正则蒙特卡洛(GCMC)及分子动力学(MD)方法探讨了石墨烯/碳纳米管三维骨架结构(GNHS)对等摩尔CO2/CH4二元混合物的吸附分离性能. 模拟结果表明CO2比CH4更易吸附于GNHS中, GNHS与(6, 6)SWCNT (单壁碳纳米管)相比具有更高的分离性能. 随着温度升高, CO2的吸附量快速降低, 而CH4的吸附量则呈现出先升高后降低的趋势. 最后采用分子动力学方法计算了CO2与CH4的自扩散系数及停留时间等动力学相关参数, 发现CO2在GNHS内扩散的阻力更大. 而各组分在吸附剂外部吸附层内的扩散过程对混合物的分离也存在一定影响.  相似文献   

10.
3d过渡金属修饰是改善石墨烯储氢性能的最有效途径, 但仍存在金属团聚和H2解离导致难以脱附的问题. 提出了B/N掺杂单缺陷石墨烯(BMG/NMG)的策略来避免以上两个问题. 密度泛函理论计算结果表明, N掺杂可以使Sc, Ti, V与石墨烯的结合能提高3~4倍, B掺杂可以将Sc与石墨烯的结合能提高3倍. Sc/BMG和Sc/NMG吸附的第一个H2不会解离. Sc/BMG中Sc吸附5个H2, 平均氢分子结合能为-0.18~-0.43 eV, 并且可以通过在同侧锚定多个Sc原子形成Sc/C3B2五元环增加H2吸附位点. Sc/NMG中每个Sc吸附6个H2, 平均氢分子结合能为-0.17~-0.29 eV, 还可以通过在异侧修饰形成Sc/N3/Sc单元进一步提高储氢能力. 研究结果将为设计基于3d过渡金属修饰碳材料的储氢材料提供理论基础.  相似文献   

11.
The surface and materials science of tin oxide   总被引:3,自引:0,他引:3  
The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn4+ surface cations into a reduced surface with Sn2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO2. Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO2 are discussed and the few surface science studies of doped SnO2 are reviewed. Epitaxial SnO2 films may facilitate the surface science studies of doped films in the future. To this end film growth on titania, alumina, and Pt(1 1 1) is reviewed. Thin films on alumina also make promising test systems for probing gas sensing behavior. Molecular adsorption and reaction studies on SnO2 surfaces have been hampered by the challenges of preparing well-characterized surfaces. Nevertheless some experimental and theoretical studies have been performed and are reviewed. Of particular interest in these studies was the influence of the surface composition on its chemical properties. Finally, the variety of recently synthesized tin oxide nanoscopic materials is summarized.  相似文献   

12.
近年来,石墨烯因其优异的电学和光学等特性,越来越受到人们的广泛关注。研究人员应用多种方法来合成石墨烯并且探讨其潜在的应用价值。本文首先简要介绍了石墨烯的结构及其基本的物理性质,并简单回顾了石墨烯的合成方法和表征手段。在此基础上,讨论了石墨烯/银复合薄膜在透明导电膜中的应用,并详细介绍了我们在该领域的研究成果。用化学气相沉积法(CVD)和多羟基法分别制备了双层石墨烯及银纳米线,成功合成了石墨烯/银复合薄膜,结果表明复合薄膜的方块电阻可降低至26 Ω·□-1,展示了其在光电器件上广泛的应用前景。  相似文献   

13.
Recent advances of SO2, NOx, H2S and CO2 adsorption on metal and nonmetallic surfaces by first-principles calculation are reviewed, and the common adsorption properties and calculation methods are summarized.  相似文献   

14.
以TiCl4为共引发剂的阳离子聚合体系的络合竞争   总被引:3,自引:0,他引:3  
通过聚合物的GPC谱图分析以及紫外光谱测试证明了以TiCl4为共引发剂的阳离子聚合体系中微量水与引发剂和TiCl4之间存在着络合竞争,提出了抑制水对阳离子聚合影响的方法.  相似文献   

15.
采用第一性原理密度泛函理论结合周期性平板模型模拟研究了Pt4团簇吸附单层石墨相氮化碳(g-C3N4)的几何结构和电子性质,以及氧气在其表面上的吸附行为。同时,对比分析了氧气在纯净的石墨相氮化碳和Pt4团簇上的吸附行为。计算结果表明, Pt4团簇吸附在3-s-三嗪环石墨相氮化碳表面,并与四个边缘氮原子成键,形成两个六元环时为最稳定构型。Pt4团簇倾向于吸附在三嗪环石墨相氮化碳的空位并与邻近三个氮原子成键。由于Pt与N原子较强的杂化作用,以及金属与底物之间较多电子转移增强了Pt4团簇吸附g-C3N4的稳定性。另外,对比分析了氧气在纯净的g-C3N4和金属吸附的g-C3N4上吸附行为,发现金属原子的加入促进了电子转移,同时拉长了O―O键长。Pt4吸附3-s-三嗪环g-C3N4比Pt4吸附三嗪环g-C3N4表现出微弱的优势,表现出明显的基底扭曲以及较大的吸附能。这些结果表明,化学吸附通过调节电子结构和表面性质增强催化性能的较好方法。  相似文献   

16.
通过水热法在氟掺杂氧化锡(FTO)导电玻璃基底上制备了垂直生长的二氧化钛(TiO2)纳米棒阵列, 以TiO2纳米棒阵列为模板采用电化学聚合法, 原位制备了TiO2-聚三[2-(4-噻吩)苯]胺(PTPAT)纳米核/壳结构的复合薄膜, 相比于纯PTPAT薄膜, TiO2-PTPAT复合薄膜显示出更好的电致变色(EC)性能. PTPAT薄膜在600 nm波长下的对比度为28%, 在1100 nm波长下的对比度为60%, 其褪色时间为3.86 s, 着色时间为5.52 s; TiO2- PTPAT复合薄膜在600 nm波长下的对比度为43%, 在1100 nm波长下的对比度为79%, 其褪色时间为3.35 s, 着色时间为4.43 s, 表明核/壳复合结构薄膜的光学对比度和响应时间性能更加优异. 将PTPAT薄膜和TiO2-PTPAT复合薄膜作为电致变色层组装成固态EC器件, 基于复合薄膜的器件具有更好的循环稳定性和更高的耐受电压. 复合薄膜在保持PTPAT薄膜原有的EC性能的基础上, 由于有序生长的纳米阵列结构的引入增加了薄膜的比表面积, 为电致变色过程中离子的掺杂和脱掺杂提供了更多有序通道, 从而加快了离子扩散速度. TiO2阵列的引入也改善了聚合物薄膜与透明导电电极之间的界面结合情况, 从而提升了器件的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号