首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
析氧反应(OER)在能量转换和储存技术中扮演着重要角色,例如在水分解和金属空气电池中,电催化剂的发展是主要任务.本文采用钴基的类沸石咪唑酯骨架结构材料(ZIFs)作为前驱体,在氩气保护气氛下,成功制备了氮掺杂钴镍磷多孔碳多面体电催化剂(CoNiP/NC).首先,采用ZIF-67作为前驱体,将ZIF-67和六水合硝酸镍按照一定比例在乙醇溶液中搅拌30 min,达到掺杂镍的目的,然后将其在不同温度下煅烧,得到的样品在300 oC氩气保护气氛下磷化,得到最终产物.所有电催化剂均通过控制碳化和磷化作用温度获得.通过对样品ZIF-67Ni进行EDS分析,证明镍成功负载到ZIF-67上,XPS结果也证明了这一点.由扫描电镜图可以看出,前驱体ZIF-67在负载Ni之后,样品表面形貌发生明显变化,表面变得粗糙,有明显的条文.磷化后样品的XRD结果说明磷化方法是成功的,同时XPS结果表明样品中有P元素存在.从扫描电镜图片可以明显看出,样品在煅烧之后表面形貌发生明显变化,由棱角明显变为表面粗糙,但是并未发生明显的团聚现象.XPS显示,样品CoNiP/NC700(700指煅烧温度(oC))中存在钴、镍、磷、碳、氮、氧这六种元素,另外还分析了其高分辨图.结果显示,电催化剂CoNiP/NC700表现出优越的电催化效率,在碱性溶液的电流密度10 mA/cm~2条件下,其开路电压约为220 mV,过电位约为300 mV.掺杂镍之后的样品性能比煅烧ZIF-67的样品好,说明镍对于提高析氧反应效率有益;同样,磷化之后样品的OER性能也有所提高.相比较而言,对于磷化之后的样品,煅烧温度是700℃时,OER催化效率最好.磷化杂化材料优越的电催化活性是由于其强的电子耦合相互作用而产生的协同效应,在镍、磷、碳等方面具有较强的协同效应.相互联系的非定形碳不仅固定了活性碳化合物以避免聚集,而且还为电子转移提供了传导通道.对样品CoNiP/NC700进行了稳定性测试,结果表明其稳定性较好,在循环10 h之后,活性仅下降了4%.这一研究表明,该复合电催化剂可能是电催化氧化反应的一个很有前景的候选催化剂.  相似文献   

3.
Designing readily available and highly active electrocatalysts for water splitting is essential for renewable energy technologies.Here we present the construction of FeCo-FeCoP@C hollow nanocubes encapsulated in nitrogen-doped carbon nanocages(FeCo-FeCoP@C@NCCs) through controlled carbonization and subsequent phosphorization of a Prussian blue analogue.With stronger electronic interaction and hollow structure,the as-obtained FeCo-FeCoP@C@NCCs material requires small overpotentials of 91 mV and280 mV to deliver 10 mA cm-2 in 1 M KOH toward hydrogen and oxygen evolution,respectively.More importantly,applying this material for overall water splitting,it only requires 1.64 V to afford10 mA cm-2 and exhibits impressively durability over 40 h without obvious performance decay.The present approach inspires potentials for the controllable synthesis of multi-component catalysts for practical applications.  相似文献   

4.
Active non-noble metal catalysts plays a decisive role for water electrolysis,however,the rational design and development of cost-efficient electrocatalysts with Pt/IrO2-like activity is still a challenging task.Herein,a facile one-step electrodeposition route in deep eutectic solvents(DESs) is developed for morphology-controllable synthesis of cobalt oxide/phosphate-carbon nano hybrids on nickel foam(CoPO@C/NF).A series of CoPO@C/NF nanostructures including cubes,octahedrons,microspheres and nanoflowers are synthesized,which show promising electrocatalytic properties toward oxygen and hydrogen evolution reactions(OER/HER).Such surface self-organized microstructure with accessible active sites make a significant contribution to the enhanced electrochemical activity,and hybridizing cobalt oxide with cobalt pyrophosphates and carbon can result in enhanced OER performance through synergistic catalysis.Among all nanostructures,the obtained microspherical CoPO@C/NF-3 catalyst exhibits excellent catalytic activities for OER and HER in 1.0 M KOH,affording an anodic current density of 10 mA cm-2 at overpotentials of 293 mV for OER and 93 mV for HER,with good long-time stability.This work offers a practical route for engineering the high-performance electrocatalysts towards efficient energy conversion and storage devices.  相似文献   

5.
众所周知, 传统化石燃料的大量使用不仅导致严重的环境污染和温室效应, 而且化石能源本身也面临着枯竭的危机.所以, 探索全新的、环境友善的、可持续发展的能源载体一直备受国内外科研工作者的关注. 氢能是一种清洁的可再生能源, 是有潜力的化石能源替代品. 水分解是一种有效的、理想的产氢途径, 然而水氧化反应是多质子多电子传递的过程, 是制约整个水分解过程的瓶颈. 目前, 基于贵金属(铱和钌)分子和氧化物的电催化剂已经被报道很多, 并且可以保持很好的催化活性; 但是, 这一类催化剂差的稳定性、昂贵的价格和少的地壳含量等因素严重制约了其大规模实际应用. 因此, 开发基于非贵金属(钴、镍、铁、铜、锰)的新型电催化剂材料是解决该问题的唯一出路, 但要保证电催化剂的高活性和好的稳定性仍面临着诸多挑战.在众多的非贵金属中, 铜是一种来源广泛的金属, 而且铜对生物体毒性较小. 由于铜具有良好的配位化学和多重的氧化还原特性, 近年来, 很多基于铜的水氧化电催化剂被开发和研究.我们在含有1.0 mmol/L Cu2+和2.0 mmol/L Tris配体的磷酸缓冲溶液(0.2 mol/L, pH = 12.0)中, 采用1.15 V vs. NHE恒电位电沉积的方法, 在ITO导电玻璃上制备出基于铜的水氧化催化剂薄膜(Cu-tricine). 对得到的催化剂薄膜进行扫描电镜(SEM)测试, 该催化剂均匀负载在ITO表面, 厚度大约是1.4 μm. 为了更加深入研究Cu-Tricine催化剂薄膜, 采用透射电子显微镜(TEM)和X射线衍射(XRD)对Cu-tricine催化剂进行表征, 结果表明, 该催化剂薄膜是一种结晶度较差的无定形材料. 同时, 为了研究催化剂薄膜的元素组成及其所处状态, 对催化剂进行了能量散射X射线能谱(EDX)和X射线光电子能谱(XPS)测试, 结果表明, 该催化剂由铜和氧元素组成, 并且铜是以正二价存在. 由高分辨O 1s XPS谱图分析结果可以推测, Cu-Tricine催化剂可能是由氧化铜和氢氧化铜组成. Cu-tricine催化剂的水氧化活性是在0.2 mol/L的磷酸缓冲溶液(pH =12.0)中进行测试, 从塔菲尔曲线中可以得出, 该催化剂达到1.0 mA/cm2的催化电流密度所需的过电位是395 mV, 塔菲尔斜率为46.7 mV/decade. 此外, 在1.15 V vs. NHE的电位下, 在10 h的电解过程中, Cu-tricine催化剂薄膜可以将催化电流密度一直保持在7.5 mA/cm2, 并且得到的法拉第效率为99%.  相似文献   

6.
Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO2 particles for OER in both alkali and acid environments.The RuO2 nanoparticles were treated with a method of pulse laser ablation.Numerous Ru and RuO2 clusters were generated at the surface of RuO2 nanoparticles after the laser ablation,forming a lychee-shaped morphology.The larger pulse energy RuO2 nanoparticles are treated with,the better the OER activity can be.DFT calculations shows that the surface tension induced by the lychee-shaped morphology benefits the OER performance.Our best sample gives an overpotential of 172 mV(at 10 mA cm-2)and a Tafel slope of 53.5 mV dec-1 in KOH,while an overpotential of 219 mV and a Tafel slope of 44.9 mV dec-1 in H2SO4,which are of topclass results.This work may inspire a new way to develop high-performance electrocatalysts for OER.  相似文献   

7.
COx(x=1,2)and O2 chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O2-hydrogenated products are still huge challenges.Single-atom catalysts(SACs)as atomic-scale novel catalysts in which only isolated metal atoms are dispersed on supports shed new insights in overcome these obstacles in COx and O2 chemistry,including CO oxidation,CO2 reduction reaction(CO2RR),oxygen reduction reaction(ORR),and oxygen evolution reaction(OER).In this review,the unique features and advanced synthesis strategies of SACs from a viewpoint of fundamental synthesis design are first highlighted to guide future strategy design for controllable SAC synthesis.Then,the to-date reported CO2RR,CO oxidation,OER,and ORR mechanism are included and summarized.More importantly,the design principles and design strategies of improving the intrinsic activity,selectivity,and stability are extensively discussed and the engineering strategy is classified as neighbor coordination engineering,metal-atom engineering,and substrate engineering.Via the comprehensive review and summary of state-of-the-art SACs,the synthesis–structure–property–mechanism–design principle relation can be revealed to shed lights into the structural construction of SACs.Finally,we present an outlook on current challenges and future directions for SACs in COx and O2 chemistry.  相似文献   

8.
为简化电解水催化剂的合成过程和优化电解水操作系统, 双功能电解水催化剂的研究, 特别是在碱性条件下同时具有优异催化氢析出和氧析出反应性能的双功能电催化剂的研究尤为重要. 其中, 过渡金属硫化物, 特别是 CoNi 硫化物, 被报道有与氢化酶类似的催化活性中心, 从而具有优异的催化氢析出和催化氧析出反应性能. 虽然有关对过渡金属硫化物的研究很多, 但主要集中在具有一维纳米线和二维纳米片形貌结构的过渡金属硫化物. 不幸的是, 这些形貌结构的过渡金属硫化物在电催化过程中容易聚集和受限于电荷传输能力. 三维纳米结构的材料具有较大的比表面积以分布更多的活性位点和拥有良好的电子传输能力, 所以, 开发三维纳米结构的过渡金属硫化物材料可能是改进其催化电解水性能的一个好途径. 本文采用简单的两步水热法, 通过硫化合成的 CoNi 前体得到了长于泡沫镍上的三维百合花状的 CoNi2S4(Co-Ni2S4/Ni). 它只需要 54 mV 的过电位即可获得 10 mA cm-2的催化氢析出反应电流, 是最好的碱性催化氢析出反应电极材料之一. 它在驱动 100 mA cm-2的催化氧析出反应电流时也只需要 328 mV 的过电位. 另外, 把 CoNi2S4/Ni 分别作为阴极和阳极组装成双电极碱性水电解槽时, 它只需要 1.56 V 的电压即可获取 10 mA cm-2的催化全电解水电流并具有良好的催化全电解水稳定性.扫描电子显微镜、透射电子显微镜和 N2吸脱附曲线测试结果表明, 该三维百合花状的 CoNi2S4/Ni 的表面粗糙度高和拥有多孔特性. 多孔结构的 CoNi2S4/Ni 可提供更多可接触的催化活性位点, 也有利于催化过程中的电解质和生成的气体的扩散与传递. 交流阻抗图谱测试结果表明, CoNi2S4/Ni 具有良好的电子传输能力. 另外, 不同于前期对尖晶石结构的硫化物 AB2S4的研究结果, XPS 结果表明, CoNi2S4/Ni 中含有 Niб+和 Sб-活性物种, 表明 CoNi2S4具有与活性氢化酶类似的活 性中心. Niδ+和 Sδ-可分别作为氢氧根和质子的接收体, 协助促进吸附的水分子的分离, 从而提高材料的催化性能. 所以, Niδ+和 Sδ-活性物种的出现, 大比表面积的三维百合花状多孔结构和良好的电荷传输能力等特性集合于 CoNi2S4/Ni 上使得CoNi2S4/Ni 具有优异的催化氢析出和催化氧析出反应性能.  相似文献   

9.
The growing energy concern all over the world has recognized hydrogen energy as the most promising renewable energy sources.Recently,electrocatalytic hydrogen evolution reaction(HER)by water splitting has been extensively studied with a focus on developing efficient electrocatalysts that can afford HER at overpotential with minimum power consumption.The two-dimensional transition metal carbides and nitride,also known as MXenes,are becoming the rising star in developing efficient electrocatalysts for HER,owing to their integrated chemical and electronic properties,e.g.,metallic conductivity,variety of redox-active transition metals,high hydrophilicity,and tunable surface functionalities.In this review,the recent progress about the fundamental understanding and materials engineering of MXenes-based electrocatalysts is summarized in concern with two aspects:i)the regulation of the intrinsic properties of MXenes,which include the composition,surface functionality,and defects;and ii)MXenes-based composites for HER process.In the end,we summarize the present challenges concerning the efficiency of MXenes-based HER electrocatalysts and propose the directions of future research efforts.  相似文献   

10.
11.
Electrocatalysts are the cores of many electrochemical reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (NRR), and CO2 reduction reaction (CO2RR). Recent advances in research have demonstrated the potentials of molybdenum carbide-based catalysts for these reactions arising out of their unique electronic structure and physicochemical properties. In this review, we systematically summarize the recent advances of molybdenum carbide-based catalysts in these electrochemical processes. The corresponding synthesis strategies, structure and electrocatalytic performance of the catalysts are discussed and the relationships of the process-structure-property are highlighted. In addition, the catalytic mechanisms are analyzed based on the structure characterization and theoretical calculations results. Finally, the existing challenges and future perspectives are put forward for further development of molybdenum carbide-based catalysts.  相似文献   

12.
Phosphorene, generally defined as two-dimensional (2D) black phosphorus (BP) with monolayered or few-layered structure, has emerged as a promising member of the family of 2D materials. Since its discovery in 2014, extensive research has been focused on broadening its applications, covering the biological, photoelectric, and electrochemical fields, owing to the unique physicochemical and structural properties. As a single-elemental material, phosphorene has demonstrated its applicability for the preparation of efficient electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), and other electrocatalytic applications. In this Minireview, a summary of the very recent research progresses of phosphorene in electrocatalysis is offered, with a special focus on the effective synthetic strategies towards performance improvement. In the concluding section, challenges and perspectives are also discussed.  相似文献   

13.
利用一步水热合成法在三维多孔泡沫镍(nickel foam,简称NF)表面构筑了由超薄纳米片交织互联形成的多级微孔结构复合材料。当初始混合料液中硫、磷物质的量之比为1∶1时,在120 ℃下水热反应24 h获得了以Ni3S2为主晶相、少量NiPS3为次晶相的镍基复合电催化剂(NiSP/NF)。得益于其超薄纳米片交织形成的独特二级微孔结构,其电化学活性面积较空白NF增加了近14倍,也为其在水电解析氢反应中的应用提供了充足的活性位点和界面通道。同时,受益于晶态Ni3S2和NiPS3所造成的晶格缺陷和强电子作用,材料的本征催化活性也得以显著提升。多方协同作用使得NiSP/NF在全水分解中均表现出优异的催化性能,在1 mol·L-1 KOH溶液中获得10 mA·cm-2的电流密度,需要的析氢和析氧过电位仅为67和212 mV。在全水分解电解槽中,其获得100 mA·cm-2的电流密度所需的槽电压仅为1.878 V,甚至在500 mA·cm-2的高电流密度下需要的分解槽压也仅为2.558 V,优于商业贵金属催化剂,电解水产氢效率显著提高。NiSP/NF在全水分解中还呈现了极优异的长效稳定性及耐用性,在电流密度为500 mA·cm-2时经过120 h的恒电流催化后,其增加的分解槽压不足0.03 V。  相似文献   

14.
利用一步水热合成法在三维多孔泡沫镍(nickel foam, 简称 NF)表面构筑了由超薄纳米片交织互联形成的多级微孔结构复合材料。当初始混合料液中硫、磷物质的量之比为 1:1时, 在 120℃下水热反应 24 h获得了以 Ni3S2为主晶相、少量 NiPS3为次晶相的镍基复合电催化剂(NiSP/NF)。得益于其超薄纳米片交织形成的独特二级微孔结构, 其电化学活性面积较空白 NF增加了近 14倍, 也为其在水电解析氢反应中的应用提供了充足的活性位点和界面通道。同时, 受益于晶态 Ni3S2和 NiPS3所造成的晶格缺陷和强电子作用, 材料的本征催化活性也得以显著提升。多方协同作用使得 NiSP/NF在全水分解中均表现出优异的催化性能, 其在 1 mol·L-1 KOH溶液中获得 10 mA·cm-2的电流密度需要的析氢和析氧过电位仅为-67和 212 mV。在全水分解电解槽中, 其获得 100 mA·cm-2的电流密度仅需 1.878 V的槽电压, 甚至在 500 mA·cm-2的高电流密度下需要的分解槽压也仅为 2.558 V, 优于商业贵金属催化剂, 电解水产氢效率显著提高。NiSP/NF在全水分解中还呈现了极优异的长效稳定性及耐用性, 在电流密度为 500 mA·cm-2时经过 120 h的恒电流催化后, 其增加的分解槽压不足 0.03 V。  相似文献   

15.
《中国化学快报》2021,32(10):2947-2962
Single atom catalyst (SAC) refers to a novel catalyst with the active metal atoms individually anchored on the support. Single atom catalysts present the unique appeal due to the high atomic availability and specific activity, as well as the high pathway selectivity. Herein, we summarized the classification, preparation, characterization, and application of single atom catalysts. Finally, the current bottlenecks and the outlooks of the SAC research are discussed.  相似文献   

16.
This review aims at presenting recent findings in the understanding of oxygen and hydrogen electrocatalysis in alkaline electrolytes that are key processes for the emergence of sustainable energy storage and conversion devices such as anion exchange membrane fuel cells and electrolyzers. In these systems, the exchange of electrons through electrochemical reactions provides a unique pathway to reversibly convert the electricity vector into chemical one: hydrogen. A concise and critical review of advances made during the last past years in the design of catalysts is provided. Challenges and opportunities for the development of the next catalyst generation are also addressed.  相似文献   

17.
With increasing energy consumption and greenhouse gas emissions, the importance of developing renewable energy sources to replace fossil fuels has become a vital global task. Hydrogen produced via water electrolysis powered by renewable energy systems at a large scale is an essential measure to reduce greenhouse gas and particulate emissions. Electrolysers use a substantial amount of water (mainly freshwater) to produce hydrogen and oxygen at the cathode, and anode, respectively. However, seawater is preferred because it is the most abundant water resource. Although many R&D efforts on seawater electrolysis have been carried out since the 1970s, the barriers are the undesired chlorine gas evolution reaction at the anode, and corrosion induced by chloride ions. Unlike the available data for electrocatalyst materials based upon platinum group metals in pure solutions, limited data is available for electrocatalysts in seawater. Therefore, there is an urgent need to develop new electrocatalysts for seawater electrolysis.  相似文献   

18.
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

19.
以高含氮量的苯胺五聚体二羧酸为配体, 在预氧化的泡沫镍上通过溶剂热反应合成了Fe, Co金属有机框架材料Fe/Co-MOF, 再以Fe/Co-MOF为金属源和碳源, 经磷化后制备出一种新型的双金属(Fe, Co)和杂原子(N, P)共掺杂的碳材料Fe/Co/P-NPs. 通过扫描电子显微镜和高分辨透射电子显微镜表征发现, Fe/Co/P-NPs由纳米粒子和纳米片组成, 并且形成Fe2P和Co2P两种晶体. 电化学测试结果表明, Fe/Co/P-NPs在析氢、 析氧及水电解中表现出了优异的多功能催化活性. 在1 mol/L KOH中, Fe/Co/P-NPs在10和100 mA/cm 2电流密度时的析氧过电位分别为270和300 mV, 均小于其它对比材料, 优于负载在泡沫镍上的RuO2. 作为水电解双功能催化剂, Fe/Co/P-NPs仅需1.48 V的电位即可获得10 mA/cm 2的电流密度.  相似文献   

20.
The conventional electrolytic water-splitting process for hydrogen production is plagued by high energy consumption, low efficiency, and the requirement of expensive catalysts. Therefore, finding effective, affordable, and stable catalysts to drive this reaction is urgently needed. We report a nanosheet catalyst composed of carbon nanotubes encapsulated with MoC/Mo2C, the Ni@MoC-700 nanosheet showcases low overpotentials of 275 mV for the oxygen evolution reaction and 173 mV for the hydrogen evolution reaction at a current density of 10 mA ⋅ cm−2. Particularly noteworthy is its outstanding performance in a two-electrode system, where a cell potential of merely 1.64 V is sufficient to achieve the desired current density of 10 mA ⋅ cm−2. Furthermore, the catalyst demonstrates exceptional durability, maintaining its activity over a continuous operation of 40 hours with only minimal attenuation in overpotential. These outstanding activity levels and long-term stability unequivocally highlight the promising potential of the Ni@MoC-700 catalyst for large-scale water-splitting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号