首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
We have employed a classical molecular dynamics simulation for the direct pick-up reaction of adsorbates by very low energy (1-60 eV) ions scattered at a surface. The system investigated is the reactive ion scattering (RIS) of Cs+ with an adsorbate on a Pt(111) surface. The ion-dipole attraction between the projectile and the physisorbed adsorbate drives the abstraction reaction, in which the ion projectile at first collides with the surface to release a substantial amount of its kinetic energy, and subsequently pulls the adsorbate along in the outgoing trajectory. Desorption induced by the ion-dipole attraction is a precursor to the formation of the Cs(+)-adsorbate product. This Eley-Rideal-type mechanism must accommodate the inertia of the adsorbate. Consequently, a successful abstraction works well only for low mass adsorbates and slow outgoing Cs+ ions. The efficient energy transfer to the Pt(111) surface makes Cs+ a better candidate for RIS than lighter projectile ions. Optimal conditions for the efficient RIS abstraction mechanism are found for physisorbed adsorbates with a mass below 32 amu, and for 10 eV Cs+ ions at a 45 degrees incidence.  相似文献   

2.
An Auger event triggered by electron-capture (EC) decay of 57 Co incorporated in a chelate molecule results in the loss of an average of 5 electrons. During subsequent charge neutralization, the molecule acquires >50 eV of excitation energy. Only molecules having a large -electron system were found to escape fragmentation. The fate of the molecule was followed by the 14.4 keV Mössbauer emission which occurs 10-7 second after the EC event. For a conjugated molecule to survive fragmentation, it should be able to disperse its energy in a time interval shorter than the period of atomic vibrations. We had proposed earlier that p-electrons undergo collective excitation and that the plasmon decays in <10-14 second accompanied by ejection of an electron leaving the molecule unscathed. Intermolecular energy transfer is not important and even an isolated molecule of 57 Co(II) phthalocyanine encapsulated in a zeolite supercage escapes fragmentation following an Auger event. Our model for rapid disposal of large excitation energy receives additional support from recent reports of single or mulitphoton plasmon excitation (20 eV) in an isolated C60 and C70 fullerene molecule followed by ejection of a single energetic electron leaving the molecule intact.  相似文献   

3.
C(60) (-) ions were scattered from a gold surface at impact energies of 80-900 eV. The C(n) (-) fragments abundance distribution (odd and even) and the sharp fragmentation threshold observed, point at a prompt shattering event. The measured angle and energy distributions of the C(n) (-) fragments (n=2-12) provide clear evidence for a multifragmentation process where the superheated fullerenes leave the surface "intact" and disintegrate away from the surface.  相似文献   

4.
Structure and dynamics of size-selected charged pyrrole clusters have been studied by means of molecular beam scattering experiments and ab initio calculations. Small neutral Pyn clusters were produced in Py/He mixture expansions, and the scattering experiment with a secondary beam of He-atoms was exploited to select the neutral clusters of different sizes. The complete size-selected fragmentation patterns for the neutral dimer to the tetramer after an electron impact ionization at 70 eV were obtained from the measurements of the angular and velocity distributions at different fragment masses. All the investigated cluster sizes decay mainly to the monomer ions Py+1 (from 60 to 80% of the corresponding neutral size) and to the dimer ion Py+2 (20-30%). The trimer ions Py+3 are generated to less than 10% from the neutral trimer and tetramer. To explain the observed results, we have calculated the structures and energetics of pyrrole clusters up to the trimer for the neutral and the ionic state using DFT and PMP2 methods. The ab initio calculations show that ionized pyrrole clusters are formed with a dimeric core that is solvated by neutral pyrrole molecules. In addition, the ground and ionic state of Py-Ar complexes were calculated at CCSD(T) level with extended basis in relevance to the mixed clusters produced in supersonic expansions of Py seeded in Ar. The calculated dissociation energies of the Py-Ar and (Py-Ar)+ complexes indicate that Ar atoms are able to rapidly evaporate after ionization. The combined analysis of the fragmentation probabilities, and calculations allowed us to estimate the distribution of energy deposited in the clusters after the electron impact, which peaks above 1 eV and has a tail up to 5 eV.  相似文献   

5.
The simulated radiolysis of cyclopropane with low energy electrons (3.5 to 15.0 eV) was investigated. The setup used for the irradiations has been described previously. Appearance curves of the various products formed under electron impact were determined. The features observed on these curves yield various indications.(1) Some products arise from the dissociation of excited molecules. Contributing states are the following ones: a triplet state at 7.4 eV, singlet states at 6.7 and/or 7.7 eV, at 8.55 eV, at 9.4 and/or 9.95 eV and superexcited states lying around 10.2 eV. As in other hydrocarbons studied, the electron impact excitation cross section shows a steep increase at the ionization potential. (2) Other products result from ion fragmentation and ion—molecule reactions.A reaction scheme was proposed to account for the chemical effects associated with excited states and the yields of excited molecules in dissociating states were derived from experimental data. The observations relative to excited molecule fragmentation are in conformity with photolysis data. Additional information on the decomposition processes of molecules excited in the triplet state at 7.4 eV, in the singlet states at 6.7 and/or 7.7 eV and in the superexcited states were obtained.Owing to the complexity of ionic mechanisms it was not possible to distinguish between the contributions of ionization and excitation. Only the radiation chemical yield of products, G(products), was evaluated. The values found for G(products) just above the ionization potential are close to the data obtained in conventional radiolysis which could indicate that secondary electrons having such energies play an important role in radiation chemistry.  相似文献   

6.
In secondary ion mass spectrometry, the detection of MCs+ clusters (with M an element of the specimen) under a Cs bombardment is frequently used for the quantification of major elements. Despite some very good results obtained by this method, some problems still remain. In order to gain some more insight into these problems, the formation mechanism of the MCs+ clusters is investigated using a Monte Carlo model. It is shown that the majority of the constituent particles of the formed clusters are initially first or second neighbor atoms at the surface and that the velocity distribution of the MCs+ clusters becomes broader and peaked at higher velocities with increasing surface binding energy of the M atom. In addition, it is demonstrated that the interaction potential between the M and Cs+ particle has no influence on the velocity distribution of the MCs+ clusters. On the other hand, the cluster formation probability, defined as the probability that a sputtered M and Cs+ particle will form a MCs+ cluster, is extremely sensitive to this interaction potential. It is also shown that the cluster formation probability decreases with increasing surface binding energy. Finally, a good correspondence is obtained between the calculated and experimental velocity distributions of MCs+ clusters sputtered from different monoatomic materials. As a consequence, the Monte Carlo model and the discussed results can be validated.  相似文献   

7.
Hyperthermal Ar atoms were scattered under grazing incidence (θ(i) = 60°) from a CO-saturated Ru(0001) surface held at 180 K. Collision-induced desorption involving the ejection of fast CO (~1 eV) occurs. The angularly resolved in-plane CO desorption distribution has a peak along the surface normal. However, the angular distribution varies with the fractional coverage of the surface. As the total CO coverage decreases, the instantaneous desorption maximum shifts to larger outgoing angles. The results are consistent with a CO desorption process that involves lateral interaction with neighboring molecules. Furthermore, the data indicate that the incident Ar cannot readily penetrate the saturated CO overlayer. Time-of-flight measurements of scattered Ar exhibit two components-fast and slow. The slow component is most evident when scattering from the fully covered surface. The ratio and origin of these components vary with the CO coverage.  相似文献   

8.
Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.  相似文献   

9.
The Eley-Rideal recombination reaction of H chemisorbed on the four-fold site of W(001) at a surface temperature T(S) = 500 K is studied using the fully three-dimensional semiclassical collisional model and an accurate potential energy surface for the H-W(001) system. The recombination probability, calculated at different collisional energies in the range (0.05-5) eV, shows a broad maximum around 0.4 for energies between 0.1 eV and 2.5 eV. The exothermic energy partitioning in the final states of the desorbing H(2) molecules shows that, at low impact energies, only the first three vibrational levels of the hydrogen molecule are energetically accessible, while at the higher impact energies vibrational levels up to v = 7 can be populated. The energy exchanged with the phonons surface is small but not negligible.  相似文献   

10.
The continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was employed to monitor the monochromatic soft x-ray-induced reactions of CF3Cl adsorbed on Si(111)-7x7 near the F(1s) edge (681-704 eV). Sequential F+ PSD spectra were measured as a function of photon exposure at the CF3Cl-covered surface (dose=0.3x10(15) molecules/cm2, approximately 0.75 ML). The F+ PSD and total electron yield (TEY) spectra of molecular solid CF3Cl near the F(1s) edge were also measured. Both F+ PSD and TEY spectra show two features at the energy positions of 690.2 and 692.6 eV, and are attributed to the excitations of F(1s) to 11a1[(C-Cl)*] and (8e+12a1)[(C-F)*] antibonding orbitals, respectively. Following Auger decay, two holes are created in the F(2p) lone pair and/or C-F bonding orbitals forming the 2h1e final state which leads to the F+ desorption. This PSD mechanism, which is responsible for the F+ PSD of solid CF3Cl, is employed to interpret the first F+ PSD spectrum in the sequential F+ PSD spectra. The variation of spectrum shapes in the sequential F+ PSD spectra indicates the dissipation of adsorbed CF3Cl molecules and the formation of surface SiF species as a function of photon exposure. From the sequential F+ PSD spectra the photolysis cross section of the adsorbed CF3Cl molecules by photons with varying energy (681-704 eV) is determined to be approximately 1.0x10(-17) cm2.  相似文献   

11.
The dissociative recombination (DR) process of NH4+ and ND4+ molecular ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for DR of NH4+ and ND4+ in the collision energy range 0.001-1 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 2000 K are calculated from the experimental data. The absolute cross section for NH4+ agrees well with earlier work and is about a factor of 2 larger than the cross section for ND4+. The dissociative recombination of NH4+ is dominated by the product channels NH3+H (0.85+/-0.04) and NH2+2H (0.13+/-0.01), while the DR of ND4+ mainly results in ND3+D (0.94+/-0.03). Ab initio direct dynamics simulations, based on the assumption that the dissociation dynamics is governed by the neutral ground-state potential energy surface, suggest that the primary product formed in the DR process is NH3+H. The ejection of the H atom is direct and leaves the NH3 molecule highly vibrationally excited. A fraction of the excited ammonia molecules may subsequently undergo secondary fragmentation forming NH2+H. It is concluded that the model results are consistent with gross features of the experimental results, including the sensitivity of the branching ratio for the three-body channel NH2+2H to isotopic exchange.  相似文献   

12.
A concerted theoretical (density-functional theory) and experimental electrospray mass spectrometry study was conducted on the formation of cesium cation adducts with small molecules taken as models of specific interactions sites in humic substances. Electrospray experiments with phenol, benzoic acid, salicylic acid, and phthalic acid, in methanolic solution containing cesium nitrate, were performed using a quadrupole ion trap. The formation of positively charged mixed clusters, [Cs(CsNO3)(n)(CsA1)(m)(Cs2A2)(p)]+ (A1 = benzoate, salicylate, and hydrogenophthalate, A2 = phthalate), was observed. Calculations of structures and bonding energetics of Cs+ in simple adducts formed with NO3-, CsNO3, A-, AH, and CsA are reported. The observation of variable cluster stoichiometry (n, m and p values) was interpreted in terms of more or less favorable interaction energies between Cs+ and the neutral species constituting the clusters. Phenol did not form clusters in significant abundances, despite a strong calculated interaction between Cs+ and cesium phenolate. This was attributed to its weak acid dissociation in the electrospray solution.  相似文献   

13.
The drugs under study; repaglinide (Repag), flubendazole (Flu), robenidine hydrochloride (Roben) and danofloxacin (Dano) are antidiabetic, anthelmintic, anticoccidial, and antibiotic drugs. In the present study, they are investigated using electron impact mass spectral (EI-MS) fragmentation at 70 eV, in comparison with thermal analyses measurements (TGA/DrTGA and DTA) and molecular orbital calculation (MO). Semi-empirical MO calculation, AM1 procedure, has been carried out on Repag, Flu, Roben and Dano both as neutral molecules (in TA) and the corresponding positively charged species (in MS). The calculated MO parameters include bond length, bond order, charge distribution on different atoms and heat of formation. The fragmentation pathways of Repag, Flu, Roben and Dano in EI-MS led to the formation of important primary and secondary fragment ions. The mechanism of formation of some important daughter ions can be illuminated from comparing with that obtained using mass spectrometer through the accurate mass measurement determination. The MO provides a base for fine distinction among sites of initial bond cleavage and subsequent fragmentation of drug molecules in both thermal analysis and MS techniques. The activation thermodynamic parameters, such as, (activation energy E1), (enthalpy ΔH1), (entropy ΔS1) and (Gibbs free energy ΔG1) are calculated from the DrTGA curves using Coats–Redfern and Horowitz–Mitzger methods.  相似文献   

14.
We present the results of a series of ab initio calculations on the ground states and the low lying excited states of the F and F+ centers in bulk ZnO. Both types of F centers are oxygen vacancies, causing rather strong distortions of the local geometries. The calculations were performed by means of wave function based methods, mostly at the CASSCF level. Dynamic correlation was included for the first two coordination shells of the F centers. The calculated absorption energy for the F+ center (3.19 eV) is in excellent agreement with the experimental value of 3.03 eV. For the emission from the 3T2 state of the F center to the 1A1 ground state we obtained a transition energy of 2.73 eV. Experimentally, a green photoluminescence is observed at 2.38-2.45 eV. We estimated that the errors in our calculation should be even smaller in the latter case than for the F+ state, where the calculated transition energy differs by less than 0.2 eV from the experimental value. Therefore, we assume that the 3T2 to 1A1 transition is not the origin of the green luminescence.  相似文献   

15.
We report that 10-100 eV Ar+ ion irradiation induces severe damage to the biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose in the condensed phase on a polycrystalline Pt substrate. Ar+ ions with kinetic energies down to 15 eV induce effective decomposition of both sugar molecules, leading to the desorption of abundant cation and anion fragments, including CH3+, C2H3+, C3H3+, H3O+, CHO+, CH3O+, C2H3O+, H-, O-, and OH-, etc. Use of isotopically labelled molecules (5- 13C D-ribose and 1-D D-ribose) reveals the site specificity for some of the fragment origins, and thus the nature of the chemical bond breaking. It is found that all of the chemical bonds in both molecules are vulnerable to ion impact at energies down to 15 eV, particularly both the endo- and exocyclic C-O bonds. In addition to molecular fragmentation, several chemical reactions are also observed. A small amount of O-/O fragments abstract hydrogen to form OH-. It is found that the formation of the H3O+ ion is related to the hydroxyl groups of the sugar molecules, and is associated with additional hydrogen loss from the parent or adjacent molecules via hydrogen abstraction or proton transfer. The formation of several other cation fragments also requires hydrogen abstraction from its parent or an adjacent molecule. These fragmentations and reactions are likely to occur in a real biomedium during ionizing radiation treatment of tumors and thus bear significant radiobiological relevance.  相似文献   

16.
The structures of crystalline hydrates of calix[4]arene-para-sulfonic acid with n (n = 6–16) water molecules and the activation barriers to surface proton migration were calculated within the framework of the density functional theory (DFT) using the PBE gradient-corrected functional, the "hard" basis set of projector-augmented waves (PAW), a corresponding pseudopotential, periodic boundary conditions, and the VASP program package. The energies of formation of crystalline hydrates from calix[4]arene-para-sulfonic acid and n water molecules calculated per water molecule are in the range of 0.4–0.9 eV and depend on n. The adsorption energy of water on the surface is in the range of 0.5–0.7 eV. The activation barriers to proton transfer across the surface calculated for the most stable crystal (n = 8) are close to experimental data and depend on the number of superstoihiometric water molecules, being equal to ~0.2 eV provided three superstoihiometric water molecules per surface SO3H group.  相似文献   

17.
The interaction between C60 molecules with a graphite (0001) surface has been investigated by means of molecular dynamics simulations. The initial energies of the C60 molecules are 90 and 270 eV, respectively. An empirical model potential suggested by Takai et al. is used to describe the interaction between carbon atoms in the C60 molecule and between the atoms forming the graphite substrate. The interaction between the C60 atoms and the graphite atoms is modeled by a suitable Lennard-Jones potential. The resilience of scattered C60 molecules is observed and its energy distribution is in reasonable agreement with available experimental data, showing no significant dependence of the rebounding translational energy on the incident kinetic energy. The energy partition in the collision has been analyzed in detail and a two-step collision model speculated in the experiments has been discussed based on the simulation results.  相似文献   

18.
The vibrational, Raman, and IR, spectra of the five 12-crown-4 (12c4) complexes with Li+, Na+, K+, Rb+, and Cs+ alkali metal cations were measured. Except for a small shift of the position of some bands in the vibrational spectra of the Li+ complex, the vibrational spectra of the five complexes are so similar that it is concluded that the five complexes exist in the same conformation. B3LYP/6-31+G* force fields were calculated for six of the eight predicted conformations in a previous report (J. Phys. Chem. A 2005, 109, 8041) of the 12c4-Li+, Na+, and K+ complexes that are of symmetries higher than the C1 symmetry. These six conformations, in energy order, are of C4, Cs, Cs, C(2v), C(2v), and Cs symmetries. Comparison between the experimental and calculated vibrational frequencies assuming any of the above-mentioned six conformations shows that the five complexes exist in the C4 conformation. This agrees with the fact that the five alkali metal cations are larger than the 12c4 ring cavity. The B3LYP/6-31+G* force fields of the C4 conformation of the Li+, Na+ and K+ complexes were scaled using a set of eight scale factors and the scale factors were varied so as to minimize the difference between the calculated and experimental vibrational frequencies. The root-mean-square (rms) deviations of the calculated frequencies from the experimental frequencies were 7.7, 5.6, and 5.1 cm(-1) for the Li+, Na+, and K+ complexes, respectively. To account for the earlier results of the Li+ complex that the Cs conformation is more stable than the C4 conformation by 0.16 kcal/mol at the MP2/6-31+G* level, optimized geometries of the complex were calculated for the C4 and Cs conformations at the MP2/6-311++G** level. The C4 conformation was calculated to be more stable than the Cs conformation by 0.13 kcal/mol.  相似文献   

19.
We study the behavior of poly(methyl methacrylate) (PMMA) exposed to femtosecond pulses of extreme ultraviolet and X-ray laser radiation in the single-shot damage regime. The employed microscopic simulation traces induced electron cascades, the thermal energy exchange of electrons with atoms, nonthermal modification of the interatomic potential, and a triggered atomic response. We identify that the nonthermal hydrogen decoupling triggers ultrafast fragmentation of PMMA strains at the absorbed threshold dose of ~0.07 eV/atom. At higher doses, more hydrogen atoms detach from their parental molecules, which, at the dose of ~0.5 eV/atom, leads to a complete separation of hydrogens from carbon and oxygen atoms and fragmentation of MMA molecules. At the dose of ~0.7 eV/atom, the band gap completely collapses indicating that a metallic liquid is formed with complete atomic disorder. An estimated single-shot ablation threshold and a crater depth as functions of fluence agree well with the experimental data collected.  相似文献   

20.
The efficiency of the collision-induced dissociation (CID) process as a function of the internal energy deposited into the ion during the ionization event was evaluated. (M + H)+ ions of pyrrole, pyrrolidine, pyridine and piperidine (five and six-membered ring heterocyclics) were generated by chemical ionization (CI). The internal energy of the ions was varied by using different reagent gases. Both high-energy (keV) and low-energy (eV) CID were performed on these ions. The experiments showed that the (M + H)+ ions of the five-membered ring compounds, pyrrole and pyrrolidine, have higher fragmentation efficiencies than the six-membered ring compounds, pyridine and piperidine. Fragmentation efficiencies in high-energy CID clearly correlate with the internal energy deposited by the ionization technique. Experiments showed that the low-energy CID process is more sensitive than high-energy CID to changes in internal energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号