首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the morphology and phase behaviors of blend thin films containing two polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a1 and a2, have similar molecular weights but different volume fractions of PS block (fPS=0.273 and 0.722). Another symmetric PS-b-PMMA diblock copolymer, coded as s, which has a PS block length similar to that of a1, was also used. For the asymmetric a1/a2 blend thin films, circular multilayered structures were formed. For the asymmetric a1/symmetric s blend thin films, inverted phases with PMMA as the dispersed domains were observed, when the weight fraction of s was less than 50%. The origins of the morphology formation in the blend thin films via solvent treatment are discussed. Combined with the theoretical prediction by Birshtein et al. (Polymer 1992, 33, 2750), we interpret the formation of these special microstructures as due to the packing frustration induced by the difference in block lengths and the preferential interactions between the solvent and PMMA block. Results obtained here suggest that diblock copolymer blend thin films treated with a selective solvent offer an alternative and attractive approach to control the self-organization of polymers.  相似文献   

2.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

3.
用动态光散射和透射电镜研究了嵌段共聚物聚苯乙烯-聚甲基丙烯酸甲酯(PS-b-PMMA)和其对应的均聚物聚甲基丙烯酸甲酯(PMMA)在选择性溶剂四氢呋喃/环己烷(THF/CYH)中的自组装行为.选择性溶剂对PS嵌段是良溶剂,对PMMA嵌段和均聚物PMMA是非良溶剂,实验结果表明,在适当的分子量及组成条件下,PS-PMMA/PMMA在选择性溶剂中形成了单分散的纳米胶束,均聚物PMMA与PMMA嵌段一同形成了胶束的核,通过控制均聚物PMMA的量可以在较大的范围内调整胶束的尺寸.  相似文献   

4.
A novel route to synthesize catenated macrocyclic PS–PMMA block copolymers is demonstrated via combination of supramolecular chemistry and controlled radical polymerization (CRP). Polymerization of styrene with bromopropionate ester initiator coupled with phenanthroline Cu(I) complex affords a four arm PS macroinitiator, which upon further chain extension by polymerization of MMA generates a four arm PS–PMMA block copolymer. Intramolecular coupling of PS–PMMA–Br arms via low temperature styrene‐assisted atom transfer radical coupling (ATRC) leads to the formation of PS–PMMA catenand, which generates the metal‐free catenated macrocyclic PS–PMMA block copolymer after removal of Cu metal. The interlocked structures of catenated block copolymers are confirmed by GPC, NMR, and AFM image analysis.  相似文献   

5.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

6.
Syndiotactic (st–) polymers of methacrylates with primary and secondary ester groups, prepared by the syndiotactic-specific living polymerization with t-C4H9Li/R3Al, were found to form stereocomplexes with isotactic (it–) poly(methyl methacrylate) (PMMA) by annealing in the solid state or by mixing in certain solvents such as acetone and toluene. Melting points of the complexes depend on the structure of the ester group and can be changed in a wide range of temperature. st–Polymers of tertiary esters did not form the complex. Effects of anneal conditions, molecular weight, and tacticity on the melting point of the complex were studied in some detail for the combination of st–poly(benzyl methacrylate) and it–PMMA. st–Random copolymers of MMA with several alkyl methacrylates also formed stereocomplexes with it–PMMA, whose melting point could be changed continuously by changing the composition in a certain range of temperature. st–Block copolymers of PMMA and poly(benzyl methacrylate) formed stereocomplexes with it–PMMA which showed two melting points, provided the block lengths are long enough for the two types of the com plexes to form independently. Stereoblock PMMA, it–PMMA–block–st–PMMA, and stereoblock copolymer, it–PMMA–blockst–poly(butyl methacrylate), were found to form stereocomplexes more easily than the corresponding mixtures. The stereoregular uniform PMMAs were used for elucidating the process of stereocomplex formation and its stoichiometry by means of gelpermeation chromatography (GPC). The preliminary results clearly indicated that the complexation occurs mainly in 1:1 stoichiometry in the beginning, while a small fraction of 1:2 (it–: st–) complex was also formed concomitantly. By similar GPC experiments using a series of uniform PMMAs, the minimum length of PMMA chains for the complex formation was found to be in the range of degrees of polymerization from 42 to 46.  相似文献   

7.
Microphase separation and the resulting morphology of asymmetric diblock copolymers of poly(ε-caprolactone) (PCL) in thin films have been investigated by atomic force microscopy. Copolymers consisted of a short block of PCL (Mn∼2500-4500 g/mole) and a longer second block of poly(methyl methacrylate) (PMMA), poly(styrene) (PS) or poly(cyclohexene oxide) (PCHO). Tendency for microphase separation above the glass transition temperature of the second block (PMMA, PS or PCHO) resulted in a pitted morphology on the surface of the thin films. This tendency was strongest for PMMA and weakest for PCHO. The presence of up to 54% PMMA homopolymer in PCL-PMMA block copolymer did not prevent the formation of such pitted morphology on the surface. The effect of the chemical structure of the second block and the possible orientations of the block copolymer molecules in thin films are discussed.  相似文献   

8.
The random coil conformation of an isolated conventional synthetic polymer chain was clearly imaged by atomic force microscopy (AFM). The sample used was a poly(styrene)-block-poly(methyl methacrylate) diblock copolymer. A very dilute solution of the copolymer with benzene was spread on a water surface. The structure thus formed on water was subsequently transferred and deposited onto mica at various surface pressures and observed under AFM. The AFM images obtained with films deposited at a low surface pressure (<0.1 mN/m) showed a single polystyrene (PS) block chain aggregated into a single PS particle with a single poly(methyl methacrylate) (PMMA) block chain emanating from the particle. Immediately after the deposition, the single PMMA block chain aggregated to form a condensed monolayer around the polystyrene particles. However, after exposing the deposited film to highly humid air for 1 day, the PMMA chains spread out so that the single PMMA block chain could be identified as a random coil on the substrate. The thin water layer formed on the mica substrate in humid air may enable the PMMA block chain to be mobilized on the substrate, leading to the conformational rearrangement from the condensed monolayer conformation to an expanded and elongated coil. The elongation of the PMMA chain was highly sensitive to the humidity; the maximum elongation was obtained at 79% relative humidity. The elongation was a slow process and took about 20 h.  相似文献   

9.
Effects of adding a small amount of poly(methyl methacrylate)-block-poly(vinyl acetate) (PMMA-b-PVAc) to poly(methyl methacrylate)/poly(vinyl acetate) (PMMA/PVAc) blends with a lower critical solution temperature (LCST) phase diagram on the kinetics of late-stage spinodal decomposition (SD) were investigated by time-resolved light scattering at 160°C. It is found that the coarsening process of the structure was slowed down or accelerated upon addition of PMMA-b-PVAc depending on the composition of the block copolymer and the blend. The effect of the block copolymer on the domain size were interpreted as compatibilizing and incompatibilizing effects of the block copolymer on PMMA/PVAc blends based on the evaluation of changes in the stability limits of PMMA/PVAc with the addition of block copolymer using random phase approximation (RPA).  相似文献   

10.
The critical micelle concentrations (CMCs) of styrene–methyl methacrylate (S-MMA) block and gradient copolymers present in a homopolymer poly(methyl methacrylate) (PMMA) matrix were determined using an intrinsic fluorescence technique based on the ratio of excimer to monomer fluorescence from styrene repeat units. The homopolymer molecular weight (MW) and copolymer MW, composition, and sequence distribution were varied to determine their effects on the CMC, and comparisons were made to theory. Although the effects of these parameters on micelle formation have been the focus of significant theoretical study, few experimental studies have addressed these issues. The MW of the S block (forming the micelle core) has a strong effect on the CMC. For example, an order of magnitude reduction in the CMC (from ∼ 1 to ∼ 0.1 wt %) is observed when the S block MW is increased from 51 to 147 kg/mol while maintaining the MMA block and PMMA MWs at 48–55 kg/mol. Increasing the PMMA matrix MW also has a strong an effect on the CMC, with the CMC for a nearly symmetric S-MMA block copolymer with each block MW equal to 48–51 kg/mol decreasing by a factor of 5 and by several orders of magnitude when the matrix MW is increased from 55 to 106 kg/mol and 255 kg/mol, respectively. In contrast, similar changes in the MMA block MW have little effect on the CMC. Finally, when present in a 55 kg/mol PMMA matrix, a 55 kg/mol S-MMA gradient copolymer with a styrene mole fraction of 0.51 exhibits a factor of 6 larger CMC than a block copolymer of similar MW and composition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2672–2682, 2008  相似文献   

11.
The interfacial behavior of poly(isoprene-b-methyl methacrylate) diblock copolymers (PI-b-PMMA), with similar PMMA blocks but differing in the percentage of PI segments, SP19 (5% PI) and SP38 (52% PI), was studied at the air-water interface. The surface pressure-area (pi-A) isotherms, compression-expansion cycles, and relaxation curves were compared with those of the PMMA homopolymer. The short hydrophobic PI block of SP19 does not contribute to the mean molecular area at low surface pressures and yet has a negative contribution (condensing effect) when the surface pressure increases. On the contrary, the long PI block of SP38 contributes considerably to the surface area from low to high surface pressures. The A-t relaxation curves compare well with those of PMMA at low surface pressures (pi = 2 mN.m-1), but not at intermediate and high pressures (pi = 10, 30 mN.m-1), where a clear dependence on the length of the PI block was observed. The quantitative analysis of the relaxation curves at high pressures shows both a fast and slow component, attributed mostly to the local and middle-to-long-range reorganization of PMMA chains, respectively. PI-b-PMMA diblocks and PMMA were further blended with PS. The PS and PMMA are immiscible at the air-water interface. The addition of PS does not change the pi-A isotherm of PMMA, but the copolymers blended with PS form films that are more condensed at low pressures. The Langmuir-Blodgett (LB) films transferred onto mica substrates were analyzed by atomic force microscopy (AFM). The LB films of single diblocks are uniform, while those of PI-b-PMMA and PMMA blended with PS show aggregates with variable patterns.  相似文献   

12.
Herein, we present a simple method for producing nanoporous templates with a high degree of lateral ordering by self‐assembly of block copolymers. A key feature of this approach is control of the orientation of polymeric microdomains through the use of hydrophilic additives as structure directing agents. Incorporation of hydrophilic poly(ethylene oxide) (PEO) moieties into poly(styrene‐b‐methyl methacrylate) (PSt‐b‐PMMA) diblock copolymers gives vertical alignment of PMMA cylinders on the substrate after solvent annealing. Because of the miscibility between PEO and PMMA, PEO additives were selectively positioned within PMMA microdomains and by controlling the processing conditions, it was found that ordering of PSt‐b‐PMMA diblock copolymers could be achieved. The perpendicular orientation of PMMA cylinders was achieved by increasing the molecular size of the PEO additives leading to an increased hydrophilicity of the PMMA domains and consequently to control the orientation of microdomains in PSt‐b‐PMMA block copolymer thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8041–8048, 2008  相似文献   

13.
The synthesis and properties of the organic polymer-silica nanocomposites by blending perhydropolysilazane with organic polymer having hydroxyl groups have been described. Poly(methyl methacrylate) (PMMA)-silica nanocomposites with a PMMA/silica lamellar structure and spherical silica domains in a PMMA matrix were obtained with random copolymers and block copolymers. The effect of the architecture of the random and block copolymers on the morphology of composites has been summarized. The thermal stability, electrical properties, such as field break down, leakage current, etc., and surface hardness of the composites have been discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5174–5181, 2006  相似文献   

14.
This is the first report concerning the use of vinyl polyperoxide, namely, poly(methyl methacrylate) peroxide (PMMAP), as a thermal initiator for the synthesis of active polymer PMMAP‐PS‐PMMAP by free‐radical polymerization with styrene. The polymerizations have been carried out at different concentrations of macroinitiator PMMAP. The active polymers have been characterized by 1H NMR, DSC, thermogravimetric analysis, and gel permeation chromatography. PMMAP‐PS‐PMMAP is further used as the thermal macroinitiator for the preparation of another block copolymer, PMMA‐b‐PS‐b‐PMMA, by reacting the active polymers with methyl methacrylate. The block copolymers have been synthesized by varying the concentrations of the active polymers. The mechanism of block copolymers has been discussed, which is also supported by thermochemical calculations. Studies on the surface texture and morphology of the block copolymer of polystyrene (PS) and PMMA material have been carried out using scanning electron microscopy. Furthermore, in this article, a blend of the same constituent materials (PS and PMMA) in proportions (v/v) similar to that contained in block copolymers has been formulated, and the morphology and surface textures of these materials were also investigated. A comparative microscopical evaluation between two processing methods was done for a better understanding of the processing route dependence of the microstructures. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 546–554, 2001  相似文献   

15.
A polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) exhibiting a well‐defined structure was prepared combining anionic polymerization and mercaptan/ε‐caprolactam living polymerization. To evaluate how this block copolymer affected the crystallization of polylactide (PLA), 0.5 wt % thiol‐terminated PS homopolymer (PSSH), PMMA, and PS‐b‐PMMA was melt‐blended with PLA. The calorimetric characterization of the nonisothermal and isothermal crystallization behavior was analyzed according to Avrami's theory, indicating that PS‐b‐PMMA more effectively increased the crystallization kinetics of the PLA matrix than did PSSH or PMMA. The results revealed that the synergistic effect of the PS and PMMA blocks appeared only when they were simultaneously presented in the PLA matrix. The PS block increased the number of nucleation sites and decreased the spherulite size, whereas the PMMA block facilitated the excellent dispersion of PS‐b‐PMMA in the PLA matrix as shown in polarizing optical microscope experiments. Incorporating PS‐b‐PMMA improved the PLA crystallization rate by promoting heterogeneous nucleation. In addition, incorporating 0.5 wt % PS‐b‐PMMA increased the relative crystallinity of PLA to 43.5%, and decreased the crystallization half‐time to 2.4 min when the blend was isothermal at 105 °C. The PLA crystal structure was unchanged by the presence of PS‐b‐PMMA; however, the crystallization rate was enhanced as probed by SEM and X‐ray diffraction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 823–832  相似文献   

16.
Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.  相似文献   

17.
Highly stable poly(methyl methacrylate) (PMMA) based microcapsule suspensions without excess dispersant are obtained via the solvent evaporation route using poly(methyl methacrylate)-block-poly(sodium methacrylate) or poly(methyl methacrylate)-block-poly(sodium acrylate) diblock copolymers as dispersant. The stable suspension is characterized by a high ζ-potential that does not change with time or after washing steps. It is indirectly proven on model PMMA surfaces using quartz crystal microbalance with dissipation monitoring that the PMMA block of the copolymer is embedded in the underlying PMMA microcapsule. Such anchoring of the dispersant is key for the good colloidal stability.  相似文献   

18.
含聚异戊二烯 (PIP)链段的嵌段共聚物有着广泛的应用[1~ 3 ] ,有关它的合成、性能表征及应用方面的研究一直是学术及工业界的研究热点 .传统上 ,含有PIP链段的嵌段共聚物用活性负离子聚合的方法来合成 ,例如 :聚苯乙烯 聚异戊二烯嵌段共聚物[3 ,4 ] .这是由聚合物增长链端的特殊活性所决定的 ,采用活性负离子聚合方法 ,不但能很好地控制共聚物的分子量和分子量分布 ,而且能控制共聚物中各组分的比例 .但是 ,负离子聚合通常需在较苛刻的条件下进行 ,如低温高真空、高纯度的单体和溶剂 ,而且能用于负离子聚合的单体也有限 .相对而言 ,…  相似文献   

19.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   

20.
A block copolymer composed of hydrophilic and crystallinic polyethylene oxide and hydrophobic and non-crystallinic polymethyl methacrylate (PMMA) was prepared by sequential initiation of alkoxy-anion and charge transfer complex using p-aminophenol as parent compound. The structure of copolymer was characterized by GPC, IR, 1H NMR and DSC in detail. The propagation of PMMA chain is dependent on the molecular weight and concentration of the first block PEO and also the polarity of solvents. The reasons are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号