首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

2.
Let \(\mathcal {V}\) be the variety of square-increasing idempotent semirings. Its members can be viewed as semilattice-ordered monoids satisfying \(x\le x^{2}\). We show that the universal theory of \(\mathcal {V}\) is decidable. In order to prove this result, we investigate the class \(\mathcal {Q}\) whose members are ordered-monoid subreducts of members from \(\mathcal {V}\). In particular, we prove that finitely generated members from \(\mathcal {Q}\) are well-partially-ordered and residually finite.  相似文献   

3.
4.
The paper is devoted to the study of intrinsic geometry of a Cartan distribution \(\mathcal{M}\) in projective space P2m . We essentially use the hyperband distribution \(\mathcal{H}\) and P2m associated with \(\mathcal{M}\). Using the duality theory, we construct, in the 4th differential neighborhood, a series of normalizations of \(\mathcal{M}\). We also consider dual affine connections \(\mathop \nabla \limits^1 \) and \(\mathop \nabla \limits^2 \) induced by the dual normalization of the Cartan distribution \(\mathcal{M}\).  相似文献   

5.
As the class \(\mathcal {PCSL}\) of pseudocomplemented semilattices is a universal Horn class generated by a single finite structure it has a \(\aleph _0\)-categorical model companion \(\mathcal {PCSL}^*\). As \(\mathcal {PCSL}\) is inductive the models of \(\mathcal {PCSL}^*\) are exactly the existentially closed models of \(\mathcal {PCSL}\). We will construct the unique existentially closed countable model of \(\mathcal {PCSL}\) as a direct limit of algebraically closed pseudocomplemented semilattices.  相似文献   

6.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

7.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

8.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

9.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

10.
We investigate boundary representations in the context where Hilbert spaces are replaced by \(\hbox {C}^{*}\)-modules over abelian von Neumann algebras and apply this to study \(\hbox {C}^{*}\)-extreme points. We present an (unexpected) example of a weak* compact \(\mathcal {B}\)-convex subset of \({\mathbb {B}}(\mathcal {H})\) without \(\mathcal {B}\)-extreme points, where \(\mathcal {B}\) is an abelian von Neumann algebra on a Hilbert space \(\mathcal {H}\). On the other hand, if \(\mathcal {A}\) is a von Neumann algebra with a separable predual and whose finite part is injective, we show that each weak* compact \(\mathcal {A}\)-convex subset of \(\ell ^{\infty }(\mathcal {A})\) is generated by its \(\mathcal {A}\)-extreme points.  相似文献   

11.
We show that several theorems about Polish spaces, which depend on the axiom of choice (\(\mathcal {AC}\)), have interesting corollaries that are theorems of the theory \(\mathcal {ZF} + \mathcal {DC}\), where \(\mathcal {DC}\) is the axiom of dependent choices. Surprisingly it is natural to use the full \(\mathcal {AC}\) to prove the existence of these proofs; in fact we do not even know the proofs in \(\mathcal {ZF} + \mathcal {DC}\). Let \(\mathcal {AD}\) denote the axiom of determinacy. We show also, in the theory \(\mathcal {ZF} + \mathcal {AD} + V = L(\mathbb {R})\), a theorem which strenghtens and generalizes the theorem of Drinfeld (Funct Anal Appl 18:245–246, 1985) and Margulis (Monatshefte Math 90:233–235, 1980) about the unicity of Lebesgue’s measure. This generalization is false in \(\mathcal {ZFC}\), but assuming the existence of large enough cardinals it is true in the model \(\langle L(\mathbb {R}),\in \rangle \).  相似文献   

12.
Let \(\mathcal{A}\) be a representation finite algebra over finite field k. In this note we first show that the existence of Hall polynomials for \(\mathcal{A}\) equivalent to the existence of the Hall polynomial \(\varphi^{M}_{N L}\) for each \(M, L \in mod\mathcal{A}\) and \(N\in ind\mathcal{A}\). Then we show that for a basic connected Nakayama algebra \(\mathcal{A}\), \(\mathcal{H}(\mathcal{A})=\mathcal{L}(\mathcal{A})\) and Hall polynomials exist for this algebra. We also provide another proof of the existence of Hall polynomials for the representation directed split algebras.  相似文献   

13.
Let \(\mathcal {C}\subset \mathbb {Q}^p_+\) be a rational cone. An affine semigroup \(S\subset \mathcal {C}\) is a \(\mathcal {C}\)-semigroup whenever \((\mathcal {C}\setminus S)\cap \mathbb {N}^p\) has only a finite number of elements. In this work, we study the tree of \(\mathcal {C}\)-semigroups, give a method to generate it and study the \(\mathcal {C}\)-semigroups with minimal embedding dimension. We extend Wilf’s conjecture for numerical semigroups to \(\mathcal {C}\)-semigroups and give some families of \(\mathcal {C}\)-semigroups fulfilling the extended conjecture. Other conjectures formulated for numerical semigroups are also studied for \(\mathcal {C}\)-semigroups.  相似文献   

14.
We consider the quantum symmetric pair \((\mathcal {U}_{q}(\mathfrak {su}(3)), \mathcal {B})\) where \(\mathcal {B}\) is a right coideal subalgebra. We prove that all finite-dimensional irreducible representations of \(\mathcal {B}\) are weight representations and are characterised by their highest weight and dimension. We show that the restriction of a finite-dimensional irreducible representation of \(\mathcal {U}_{q}(\mathfrak {su}(3))\) to \(\mathcal {B}\) decomposes multiplicity free into irreducible representations of \(\mathcal {B}\). Furthermore we give explicit expressions for the highest weight vectors in this decomposition in terms of dual q-Krawtchouk polynomials.  相似文献   

15.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

16.
Completely regular semigroups \(\mathcal {C}\mathcal {R}\) are unions of their subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by \(\mathcal {L}(\mathcal {C}\mathcal {R})\). The Polák theorem concerns the computation of joins in \(\mathcal {L}(\mathcal {C}\mathcal {R})\). The \(\mathbf {B}\)-relation on \(\mathcal {L}(\mathcal {C}\mathcal {R})\) identifies varieties with the same bands. We elaborate upon two nontrivial conditions in Polák’s theorem applied to certain subsets of \(\mathcal {C}\mathcal {R}\) which amounts to solving particular equations in \(\mathcal {L}(\mathcal {C}\mathcal {R})\).  相似文献   

17.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

18.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

19.
Fix sets X and Y, and write \(\mathcal P\mathcal T_{XY}\) for the set of all partial functions \(X\rightarrow Y\). Fix a partial function \({a:Y\rightarrow X}\), and define the operation \(\star _a\) on \(\mathcal P\mathcal T_{XY}\) by \(f\star _ag=fag\) for \(f,g\in \mathcal P\mathcal T_{XY}\). The sandwich semigroup \((\mathcal P\mathcal T_{XY},\star _a)\) is denoted \(\mathcal P\mathcal T_{XY}^a\). We apply general results from Part I to thoroughly describe the structural and combinatorial properties of \(\mathcal P\mathcal T_{XY}^a\), as well as its regular and idempotent-generated subsemigroups, \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). After describing regularity, stability and Green’s relations and preorders, we exhibit \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups \(\mathcal P\mathcal T_X\) and \(\mathcal P\mathcal T_Y\), and as a kind of “inflation” of \(\mathcal P\mathcal T_A\), where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of \(\mathcal P\mathcal T_{XY}^a\)\({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.  相似文献   

20.
The paper concerns investigations of holomorphic functions of several complex variables with a factorization of their Temljakov transform. Firstly, there were considered some inclusions between the families \(\mathcal {C}_{\mathcal {G}},\mathcal {M}_{\mathcal {G}},\mathcal {N}_{\mathcal {G}},\mathcal {R}_{\mathcal {G}},\mathcal {V}_{\mathcal {G}}\) of such holomorphic functions on complete n-circular domain \(\mathcal {G}\) of \(\mathbb {C}^{n}\) in some papers of Bavrin, Fukui, Higuchi, Michiwaki. A motivation of our investigations is a condensation of the mentioned inclusions by some new families of Bavrin’s type. Hence we consider some families \(\mathcal {K}_{ \mathcal {G}}^{k},k\ge 2,\) of holomorphic functions f :  \(\mathcal {G}\rightarrow \mathbb {C},f(0)=1,\) defined also by a factorization of \( \mathcal {L}f\) onto factors from \(\mathcal {C}_{\mathcal {G}}\) and \(\mathcal {M} _{\mathcal {G}}.\) We present some interesting properties and extremal problems on \(\mathcal {K}_{\mathcal {G}}^{k}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号