首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Features of the ignition kinetics of an H2/air mixture in the supersonic flow behind an inclined shock front are analyzed when asymmetric vibrations of a small amount (<1%) of O3 molecules specially introduced into the initial mixture are excited by 9.7 μm wavelength radiation. It is shown that this radiation leads to intensification of the chain reactions and makes it possible to organize combustion at small distances from the front (of the order of 1 m) of even relatively weak shocks at small values of the laser radiation energies absorbed by the gas. This method of initiating combustion in a supersonic flow is 10–100 times more efficient than the thermal method.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 157–167.Original Russian Text Copyright © 2005 by Lukhovitskii, Starik, and Titova.  相似文献   

2.
Carbon storage in saline formations is considered as a promising option to ensure the necessary decrease of CO2 anthropogenic emissions. Its industrial development in those formations is above all conditioned by its safety demonstration. Assessing the evolution of trapped and mobile CO2 across time is essential in the perspective of reducing leakage risks. In this work, we focus on residual trapping phenomenon occurring during the wetting of the injected CO2 plume. History dependent effects are of first importance when dealing with capillary trapping. We then apply the classical fractional flow theory (Buckley–Leverett type model) and include trapping and hysteresis models; we derive an analytical solution for the temporal evolution of saturation profile and of CO2 trapped quantity when injecting water after the gas injection (“artificial imbibition”). The comparison to numerical simulations for different configurations shows satisfactory match and justifies, in the case of industrial CO2 storage, the assumptions of incompressible flow with no consideration of capillary pressure. The obtained analytical solution allows the quick assessment of both the quantity and the location of mobile gas left during imbibition.  相似文献   

3.
In this paper, a non-isobaric Marangoni boundary layer flow that can be formed along the interface of immiscible nanofluids in surface driven flows due to an imposed temperature gradient, is considered. The solution is determined using a similarity solution for both the momentum and energy equations and assuming developing boundary layer flow along the interface of the immiscible nanofluids. The resulting system of nonlinear ordinary differential equations is solved numerically using the shooting method along with the Runge-Kutta-Fehlberg method. Numerical results are obtained for the interface velocity, the surface temperature gradient as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ (0≤φ≤0.2) and the constant exponent β. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 are considered by using water-based fluid with Prandtl number Pr =6.2. It was found that nanoparticles with low thermal conductivity, TiO2, have better enhancement on heat transfer compared to Al2O3 and Cu. The results also indicate that dual solutions exist when β<0.5. The paper complements also the work by Golia and Viviani (Meccanica 21:200–204, 1986) concerning the dual solutions in the case of adverse pressure gradient.  相似文献   

4.
Dissolution of CO2 into brine is an important and favorable trapping mechanism for geologic storage of CO2. There are scenarios, however, where dissolved CO2 may migrate out of the storage reservoir. Under these conditions, CO2 will exsolve from solution during depressurization of the brine, leading to the formation of separate phase CO2. For example, a CO2 sequestration system with a brine-permeable caprock may be favored to allow for pressure relief in the sequestration reservoir. In this case, CO2-rich brine may be transported upwards along a pressure gradient caused by CO2 injection. Here we conduct an experimental study of CO2 exsolution to observe the behavior of exsolved gas under a wide range of depressurization. Exsolution experiments in highly permeable Berea sandstones and low permeability Mount Simon sandstones are presented. Using X-ray CT scanning, the evolution of gas phase CO2 and its spatial distribution is observed. In addition, we measure relative permeability for exsolved CO2 and water in sandstone rocks based on mass balances and continuous observation of the pressure drop across the core from 12.41 to 2.76 MPa. The results show that the minimum CO2 saturation at which the exsolved CO2 phase mobilization occurs is from 11.7 to 15.5%. Exsolved CO2 is distributed uniformly in homogeneous rock samples with no statistical correlation between porosity and CO2 saturation observed. No gravitational redistribution of exsolved CO2 was observed after depressurization, even in the high permeability core. Significant differences exist between the exsolved CO2 and water relative permeabilities, compared to relative permeabilities derived from steady-state drainage relative permeability measurements in the same cores. Specifically, very low CO2 and water relative permeabilities are measured in the exsolution experiments, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the water and CO2 phases is hypothesized to result from the presence of disconnected gas bubbles in this two-phase flow system. This feature is also thought to be favorable for storage security after CO2 injection.  相似文献   

5.
We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO2 stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the groundwater column to collapse ahead of the plume tip. Increased resistance to vertical flow of aqueous phase in anisotropic media leads to reduced speed of up-dip plume advancement. Vertical equilibrium models that ignore effects of vertical flow will overpredict the speed of plume advancement. The CO2 plume becomes thinner as it advances, but the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulations include dissolution of CO2 into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it is suppressed by the relatively coarse (sub-) horizontal gridding required in a regional-scale model. A first crude sub-grid-scale model was developed to represent convective enhancement of CO2 dissolution. This process is found to greatly reduce the thickness of the CO2 plume, but, for the parameters used in our simulations, does not affect the speed of plume advancement.  相似文献   

6.
Models of population of some radiating electron-vibrational states of CO, CN, and C2 molecules are developed. The characteristics of radiation in a chemically nonequilibrium flow behind the front of a strong shock wave in a mixture of gases constituting the Martian atmosphere are calculated. The numerical data are compared with experimental results.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 13–22, March–April, 2005  相似文献   

7.
Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH4. It is well known that CH4 drastically alters supercritical CO2 density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH4 on supercritical CO2 injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO2; and (3) with residual CH4. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile-gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.  相似文献   

8.
Co-injection of water with CO2 is an effective scheme to control initial gas saturation in porous media. A fractional flow rate of water of approximately 5–10% is sufficient to reduce initial gas saturations. After water injection following the co-injection, most of the gas injected in the porous media is trapped by capillarity with a low fractional volume of migrating gas. In this study, we first derive an analytical model to predict the gas saturation levels for co-injection with water. The initial gas saturation is controlled by the fractional flow ratio in the co-injection process. Next, we experimentally investigate the effect of initial gas saturation on residual gas saturation at capillary trapping by co-injecting gas and water followed by pure water injection, using a water and nitrogen system at room temperature. Depending on relative permeability, initial gas saturation is reduced by co-injection of water. If the initial saturation in the Berea sandstone core is controlled at 20–40%, most of the gas is trapped by capillarity, and less than 20% of the gas with respect to the injected gas volume is migrated by water injection. In the packed bed of Toyoura standard sand, the initial gas saturation is approximately 20% for a wide range of gas with a fractional flow rate from 0.50 to 0.95. The residual gas saturation for these conditions is approximately 15%. Less than approximately 25% of the gas migrates by water injection. The amount of water required for co-injection systems is estimated on the basis of the analytical model and experimental results.  相似文献   

9.
The injection of CO2 in exploited natural gas reservoirs as a means to reduce greenhouse gas (GHG) emissions is highly attractive as it takes place in well-known geological structures of proven integrity with respect to gas leakage. The injection of a reactive gas such as CO2 puts emphasis on the possible alteration of reservoir and caprock formations and especially of the wells’ cement sheaths induced by the modification of chemical equilibria. Such studies are important for injectivity assurance, wellbore integrity, and risk assessment required for CO2 sequestration site qualification. Within a R&D project funded by Eni, we set up a numerical model to investigate the rock–cement alterations driven by the injection of CO2 into a depleted sweet natural gas pool. The simulations are performed with the TOUGHREACT simulator (Xu et al. in Comput Geosci 32:145–165, 2006) coupled to the TMGAS EOS module (Battistelli and Marcolini in Int J Greenh Gas Control 3:481–493, 2009) developed for the TOUGH2 family of reservoir simulators (Pruess et al. in TOUGH2 User’s Guide, Version 2.0, 1999). On the basis of field data, the system is considered in isothermal (50°C) and isobaric (128.5 bar) conditions. The effects of the evolving reservoir gas composition are taken into account before, during, and after CO2 injection. Fully water-saturated conditions were assumed for the cement sheath and caprock domains. The gas phase does not flow by advection from the reservoir into the interacting domains so that molecular diffusion in the aqueous phase is the most important process controlling the mass transport occurring in the system under study.  相似文献   

10.
The properties and microstructure of an Al/(Al2O3 + TiB2 + ZrB2) hybrid composite made by using hot pressing of aluminum combined with different amounts of TiB2, ZrB2, and Al2O3 powders are studied. The mechanical properties of the composites are investigated on the basis of microhardness and compression tests. The results show that the microstructure of the composites is uniform and the particles are well distributed in the matrix.  相似文献   

11.
The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.  相似文献   

12.
Auto-igniting n-heptane sprays have been studied experimentally in a high pressure, high temperature constant volume combustion chamber with optical access. Ignition delay and the total pressure increase due to combustion are highly repeatable whereas the ignition location shows substantial fluctuations. Simulations have subsequently been performed by means of a first-order fully elliptic Conditional Moment Closure (CMC) code. Overall, the simulations are in good agreement with the experiment in terms of spray evolution, ignition delay and the pressure development. The sensitivity of the predictions with respect to the measured initial conditions, the spray modelling options as well as the chemical mechanism employed have been analysed. Strong sensitivity on the chemical mechanism and to the initial temperature on the predicted ignition delay is reported. The primary atomisation model did not affect strongly the predicted auto-ignition time, but a strong influence was found on the ignition location prediction.  相似文献   

13.
In order to study the heat transfer and pressure drop on four types of internal heat exchangers (IHXs) of a CO2 system, the experiment and numerical analysis were performed under a cooling condition. The configuration of the IHXs was a coaxial type and a micro-channel type. Two loops on the gas cooler part and the evaporator part were made, for experiment. And the section-by-section method and Hardy-Cross method were used for the numerical analysis. The capacity and pressure drop of the IHX are larger at the micro-channel type than at the coaxial type. When increasing the mass flow rate and the IHX length the capacity and pressure drop increase. The pressure drop of the evaporator loop is much larger than that of the gas cooler loop. The performance of the IHX was affected with operating condition of the gas-cooler and evaporator. The deviations between the experimental result and the numerical result are about ±20% for the micro-channel type and ±10% for the coaxial type. Thus, the new CO2 heat transfer correlation should be developed to precisely predict a CO2 heat transfer.  相似文献   

14.
For deep injection of CO2 in thick saline formations, the movements of both the free gas phase and dissolved CO2 are sensitive to variations in vertical permeability. A simple model for vertical heterogeneity was studied, consisting of a random distribution of horizontal impermeable barriers with a given overall volume fraction and distribution of lengths. Analytical results were obtained for the distribution of values for the permeability, and compared to numerical simulations of deep CO2 injection and convection in heterogeneous formations, using multiple realizations for the permeability distribution. It is shown that for a formation of thickness H, the breakthrough times in two dimensions for deep injection scale as H 2 for moderate injection rates. In comparison to heterogeneous shale distributions, a homogeneous medium with equivalent effective vertical permeability has a longer breakthrough time for deep injection, and a longer onset time for convection.  相似文献   

15.
According to the research theory of improved black oil simulator, a practical mathematical model for C02 miscible flooding was presented. In the model, the miscible process simulation was realized by adjusting oil/gas relative permeability and effective viscosity under the condition of miscible flow. In order to predict the production performance fast, streamline method is employed to solve this model as an alternative to traditional finite difference methods. Based on streamline distribution of steady-state flow through porous media with complex boundary confirmed with the boundary element method (BEM), an explicit total variation diminishing (TVD) method is used to solve the one-dimensional flow problem. At the same time, influences of development scheme, solvent slug size, and injection periods on CO2 drive recovery are discussed. The model has the advantages of less information need, fast calculation, and adaptation to calculate CO2 drive performance of all kinds of patterns in a random shaped porous media with assembly boundary. It can be an effective tool for early stage screening andmiscible oil field.reservoir dynamic management of the CO2 miscible oil field.  相似文献   

16.
This work is focused on numerical simulations of natural convection heat transfer in Al2O3-water nanofluids using computational fluid dynamics approach. Fluent v6.3 is used to simulate water based nanofluid considering it as a single phase. Thermo-physical properties of the nanofluids are considered in terms of volume fraction and size of nanoparticles, size of base fluid molecule and temperature. The numerical values of effective thermal conductivity have also been compared with the experimental values available in the literature. The numerical result simulated shows decrease in heat transfer with increase in particle volume fraction. Computed result shows similar trend in increase of Nusselt number with Relayigh number as depicted by experimental results. Streamlines and temperature profiles are plotted to demonstrate the effect.  相似文献   

17.
Large eddy simulations of large-scale CH4 fire plumes (1.59-2.61 MW) with two different CFD packages, FireFOAM and FDS, are presented. It is investigated how the vorticity generation mechanism and puffing behavior of large-scale fire plumes differs from previously studied iso-thermal buoyant plumes of the same scale. In addition, the predictive capabilities of the turbulence and combustion models, currently used by the two CFD codes, to accurately capture the fire dynamics and the buoyancy-generated turbulence associated with large-scale fire plumes are evaluated. Results obtained with the two CFD codes, typically used for numerical simulations of fire safety applications, are also compared with respect to the average and rms velocities and temperatures, puffing frequencies, average flame heights and entrainment rates using experimental data and well-known correlations in literature. Furthermore, the importance of the applied reaction time scale model in combination with the Eddy Dissipation Model is examined. In particular, the influence of the considered mixing time scales in the predicted centerline temperatures is illustrated and used to explain the discrepancies between the two codes.  相似文献   

18.
On the basis of observations at four enhanced coalbed methane (ECBM)/CO2 sequestration pilots, a laboratory-scale study was conducted to understand the flow behavior of coal in a methane/CO2 environment. Sorption-induced volumetric strain was first measured by flooding fresh coal samples with adsorptive gases (methane and CO2). In order to replicate the CO2–ECBM process, CO2 was then injected into a methane-saturated core to measure the incremental “swelling.” As a separate effort, the permeability of a coal core, held under triaxial stress, was measured using methane. This was followed by CO2 flooding to replace the methane. In order to best replicate the conditions in situ, the core was held under uniaxial strain, that is, no horizontal strain was permitted during CO2 flooding. Instead, the horizontal stress was adjusted to ensure zero strain. The results showed that the relative strain ratio for CO2/methane was between 2 and 3.5. The measured volumetric strains were also fitted using a Langmuir-type model, thus enabling calculation of the strain at any gas pressure and using the analytical permeability models. For permeability work, effort was made to increase the horizontal stress to achieve the desired zero horizontal strain condition expected under in situ condition, but this became impossible because the “excess” stress required to maintain this condition was very large, resulting in sample failure. Finally, when CO2 was introduced and horizontal strain was permitted, permeability reduction was an order of magnitude greater, suggesting that the “excess” stress would have reduced it significantly further. The positive finding of the work was that the “excess” stresses associated with injection of CO2 are large. The excess stresses generated might be sufficient to cause microfracturing and increased permeability, and improved injectivity. Also, there might be a weakening effect resulting from repeated CO2 injection, as has been found to be the case with thermal cycling of rocks.  相似文献   

19.
Mitigation and control of borehole pressure at the bottom of an injection well is directly related to the effective management of well injectivity during geologic carbon sequestration activity. Researchers have generally accepted the idea that high rates of CO2 injection into low permeability strata results in increased bottom-hole pressure in a well. However, the results of this study suggested that this is not always the case, due to the occurrence of localized salt precipitation adjacent to the injection well. A series of numerical simulations indicated that in some cases, a low rate of CO2 injection into high permeability formation induced greater pressure build-up. This occurred because of the different types of salt precipitation pattern controlled by buoyancy-driven CO2 plume migration. The first type is non-localized salt precipitation, which is characterized by uniform salt precipitation within the dry-out zone. The second type, localized salt precipitation, is characterized by an abnormally high level of salt precipitation at the dry-out front. This localized salt precipitation acts as a barrier that hampers the propagation of both CO2 and pressure to the far field as well as counter-flowing brine migration toward the injection well. These dynamic processes caused a drastic pressure build-up in the well, which decreased injectivity. By modeling a series of test cases, it was found that low-rate CO2 injection into high permeability formation was likely to cause localized salt precipitation. Sensitivity studies revealed that brine salinity linearly affected the level of salt precipitation, and that vertical permeability enhanced the buoyancy effect which increased the growth of the salt barrier. The porosity also affected both the level of localized salt precipitation and dry-out zone extension depending on injection rates. High temperature injected CO2 promoted the vertical movement of the CO2 plume, which accelerated localized salt precipitation, but at the same time caused a decrease in the density of the injected CO2. The combination of these two effects eventually decreased bottomhole pressure. Considering the injectivity degradation, a method is proposed for decreasing the pressure build-up and increasing injectivity by assigning a ‘skin zone’ that represents a local region with a transmissivity different from that of the surrounding aquifer.  相似文献   

20.
The electrorheological properties (ER) of some fluids containing particles change extensively under the external electrical field. This phenomenon is applicable in many industries and equipments, such as clutches and motor driven rotor, which would transfer the spin to a drive shaft through a thin layer of electrorheological fluid. In this investigation, the effects of external electrical field on ER properties of non-Newtonian fluids (silicon oil) with the addition of SnO2 and Y2O3 nanoparticles were studied. The ER properties were measured for a wide range of SnO2 and Y2O3 nanoparticle concentrations and DC electrical voltages using concentric cylinder rotary rheometer. Based on the results, ER properties of nanofluids, e.g., apparent viscosity, shear stress, and yield stress, were enhanced by applying electrical field and increasing SnO2 and Y2O3 concentrations.
S. Gh. EtemadEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号