首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of scalar as well as spinor excited states of OsO4, in the experimentally accessible energy range of 3–11 eV, have been captured by time‐dependent relativistic density functional linear response theory based on an exact two‐component Hamiltonian resulting from the symmetrized elimination of the small component. The results are grossly in good agreement with those by the singles and doubles coupled‐cluster linear response theory in conjunction with relativistic effective core potentials. The simulated‐excitation spectrum is also in line with the available experiment. Furthermore, combined with detailed analysis of the excited states, the nature of the observed optical transitions is clearly elucidated. It is found that a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin‐orbit coupling. The possible source for the substantial spin‐orbit splittings of ligand molecular orbitals is carefully examined, leading to a new interpretation on the primary valence photoelectron ionization spectrum of OsO4. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
3.
The focal point of our discussion is the examination of truncated basis sets used in obtaining an accurate first principles clculation of the effective valence shell Hamiltonian by the canonical transformation-cluster expansion approasch. Subsequent diagonalization of this effecitve valence shell hamiltonian yields the valence shell transition energies. A detailed analysis of numerical results obtained using a number of different basis sets of hydrogen-like orbitals together with rigorous symmetry arguments celarly demonstrates the special role played by d orbitals in computing the 3P1D transition energy in carbon. The failure of early attempts to calculate the effective Hamiltonian for ethylene from first principles is examined in the light of recent ab initio calculations on ethylene involving d orbitals and the computations reported in this paper. We conclude that accurate calculations of the effective valence shell Hamiltonian for molecules must consider d orbitals in the excited orbital basis set.  相似文献   

4.
The excited states of ethylene are systematically analyzed and characterized according to the natural orbitals (NOs) resulting from multireference configuration interaction singles and doubles (MRCISD) calculations. By comparing the shapes and nodal structures of the NOs with those of hydrogen atomic orbitals, the Rydberg series can be classified. Two or three different types of Rydberg series appear within five excited states for each symmetry of D2h. For example, in the 1Ag symmetry there are three series having np and two nf hydrogen‐like atomic orbitals. Electronic correlation effects for the (π→π*) V state are also discussed on the basis of a complete active space self‐consistent field (CASSCF) calculation, showing that electron correlation effects merely within the valence space cannot explain contraction of the V state. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

5.
The low‐lying electronic excited states of [Re(imidazole)(CO)3(phen)]+ (phen = 1,10‐phenanthroline) ranging between 420 nm and 330 nm have been calculated by means of relativistic spin‐orbit time‐dependent density functional theory (TD‐DFT) and wavefunction approaches (state‐average‐CASSCF/CASPT2). A direct comparison between the theoretical absorption spectra obtained with different methods including SOC and solvent corrections for water points to the difficulties at describing on the same footing the bands generated by metal‐to‐ligand charge transfer (MLCT), intraligand (IL) transition, and ligand‐to‐Ligand‐ charge transfer (LLCT). While TD‐DFT and three‐roots‐state‐average CASSCF (10,10) reproduce rather well the lowest broad MLCT band observed in the experimental spectrum between 420 nm and 330 nm, more flexible wavefunctions enlarged either by the number of roots or by the number of active orbitals and electrons destabilize the MLCT states by introducing IL and LLCT character in the lowest part of the absorption spectrum. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
In a recent publication [C. A. Nicolaides and Y. Komninos, Int. J. Quant. Chem. 67 , 321 (1998)], we proposed that in certain classes of molecules the fundamental reason for the formation of covalent polyatomic molecules in their normal shape is to be found in the existence of a geometrically active atomic state (GAAS) of the central atom, whose shape, together with its maximum spin‐and‐space coupling to the ligands, predetermines the normal molecular shape (NMS). The shape of any atomic state was defined as that which is deduced from the maxima of the probability distribution ϱ(cos θ12) of the angle formed by the position vectors of two electrons of an N‐electron atom. Because the shape of the GAAS determines the NMS and because the NMS allows the construction of corresponding hybrid orbitals, we examined and discovered the connection between the GAAS shape and Pauling's function for the strength of two equivalent orthogonal orbitals at angle θ12 with one another. It is shown that the computed ϱ(cos θ12) of the GAAS can be cast in a form which allows the deduction of the composition of the hybrid orbitals of maximum spin states with configurations sp3, sp3d5, sp3d5f7, sln, s2ln and the demonstration of the central atom's tendency to form bonds in directions which coincide with the nodal cones of the hybrid bond orbitals. These results not only reinforce the validity of the theory as to the fundamental “mechanism” for the formation in the normal shape of coordination compounds and covalently bonded polyatomic molecules, but also provide the justification for the relevance and importance of the hybridization model. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 25–34, 1999  相似文献   

7.
Ab initio all‐electron computations have been carried out for Ce+ and CeF, including the electron correlation, scalar relativistic, and spin–orbit coupling effects in a quantitative manner. First, the n‐electron valence state second‐order multireference perturbation theory (NEVPT2) and spin–orbit configuration interaction (SOCI) based on the state‐averaged restricted active space multiconfigurational self‐consistent field (SA‐RASSCF) and state‐averaged complete active space multiconfigurational self‐consistent field (SA‐CASSCF) wavefunctions have been applied to evaluations of the low‐lying energy levels of Ce+ with [Xe]4f15d16s1 and [Xe]4f15d2 configurations, to test the accuracy of several all‐electron relativistic basis sets. It is shown that the mixing of quartet and doublet states is essential to reproduce the excitation energies. Then, SA‐RASSCF(CASSCF)/NEVPT2 + SOCI computations with the Sapporo(‐DKH3)‐2012‐QZP basis set were carried out to determine the energy levels of the low‐lying electronic states of CeF. The calculated excitation energies, bond length, and vibrational frequency are shown to be in good agreement with the available experimental data. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
A novel algorithm is introduced for coding all Slater determinants in the covalent space with conserved SZ, the z component of total spin S for a classical valence bond (VB) model. It effectively minimizes the search time and the storing space in the central memory of the computer. In cooperation with symmetry reductions based on molecular point group and spin inversion, the VB calculations have been extended to benzenoid hydrocarbons of up to 28 π‐electrons that have 4×107 configurations. The low‐lying states of benzenoids with 24, 26, and 28 π‐electrons have been obtained for 62 species. To rationalize the aromaticity of benzenoids in a VB scheme, the resonance energy per hexagon (REPH) is defined. A linear correlation between the REPH and the energy gap of the ground (singlet) state and the first excited (triplet) state for 89 benzenoids is established. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 856–869, 2000  相似文献   

9.
The electronic structures of heme a of cytochrome c oxidase in the redox states were studied, using hybrid density functional theory with a polarizable continuum model and a point charge model. We found that the most stable electronic configurations of the d electrons of the Fe ion are determined by the orbital interactions of the d orbitals of the Fe ion with the π orbitals of the porphyrin ring and the His residues. The redox reaction of the Fe ion influences the charge density on the formyl group through the π conjugation of the porphyrin ring. In addition, we found the charge transfer from the Fe ion to the propionate group of heme a in the redox change despite the lack of the π‐conjugation. We elucidated that the charge propagation originates from the heme a structure itself and that the origin of the charge delocalization to the heme propionate is the orbital interactions between the d orbital of the Fe ion and the p orbitals of the carboxylate part of the heme propionate via the π conjugation of the porphyrin ring and the σ* orbital of the C? C bond of the propionate group. The electrostatic effect by surrounding proteins enhances the charge transfer from the Fe ion to the propionate group. These results indicate that heme propionate groups serve electron mediators in electron transfer as well as electrostatic anchors, and that proteins surrounding the active site reinforce the congenital abilities of the cofactors. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

10.
11.
A valence bond analysis of the wave function of doubly reduced polyoxometales is presented, using the M6O19 Lindqvist structure as test case. By a unitary transformation of the delocalised valence orbitals to localised metal centred orbitals, the multiconfigurational wave function is mapped onto a valence bond function with three different types of configurations: the two electrons are on the same site, on neighbouring sites, or on next-nearest neighbour sites. The inspection of the relative weights of these configurations for triplet and singlet state shows that the triplet-coupled electrons are confined to a smaller volume, and hence have a higher energy than the singlet-coupled electrons. This is in line with the experimental observation that the doubly reduced polyoxometalates show non-mangetic behaviour.  相似文献   

12.
An analysis of the electronic correlation structures by means of the charge and spin correlation functions is carried out for full CI wave functions of four, five, and six membered conjugated π systems described by the Pariser–Parr–Pople Hamiltonian. The low-lying states of these systems are classified as covalent (CV ) and ionic (IN ) states depending on whether the probability of finding two electrons simultaneously at the same position is small or large. It is found that many of excited CV states, the typical ones of which are the 21Ag state of linear π systems, have stronger CV character than the ground CV state, and their spin coupling structures are different from each other as well as from that of the ground CV state. The spin coupling structure in the ground CV state has an “antiferromagnetic” spin arrangement in favor of antiparallel coupling between nearest neighbor spins while in excited CV states the extent of the antiparallel spin coupling between nearest neighbor sites is decreased. IN states, which are less common for low-lying states than CV ones, are also found to have characteristic modulations in the charge correlation. In particular, the charge correlations in the lowest singlet IN states, 11Bu of linear π systems, 11B2g of cyclobutadiene and 11B1U of benzene, are alternating.  相似文献   

13.
The energies of some electron configurations of sulphur in organic sulphides involving 3d and 4s orbitals have been derived by simulating the radial and angular perturbation of the molecular environment on sulphur valence orbitals, with electrostatic potentials. In order to discuss the relevance of the electron configurations in the molecular valence state and the role of the excited orbitals 4s and 3d to bonding, the energies were minimized in respect of size and orientation of sulphur valence orbitals. Interatomic exchange terms were included and the importance of interatomic exchange terms involving the electrons on carbons is discussed. The results are indicative for a negligible participation of 3d and 4s orbitals of sulphur to the ground state of aliphatic and unsaturated sulphides.  相似文献   

14.
15.
Superexchange interactions in alkali fullerides AC(60) are derived for C(60) molecular ions separated by interstitial alkali-metal ions. We use a multiconfiguration approach which comprises the lowest molecular orbital states of the C(60) molecule and the excited s and d states of the alkali-metal atom A. Interactions are described by the valence bond (Heitler-London) method for a complex (C(60)-A-C(60))(-) with two valence electrons. The electronic charge transfer between the alkali-metal atom and a neighboring C(60) molecule is not complete. The occupation probability of excited d and s states of the alkali atom is not negligible. In correspondence with the relative positions of the C(60) molecules and A atoms in the polymer crystal, we consider 180 degrees and 90 degrees (angle) superexchange pathways. For the former case the ground state is found to be a spin singlet separated from a triplet at approximately 20 K. For T<20 K there appear strong spin correlations for the 180 degrees superexchange pathway. The results are related to spin lattice relaxation experiments on CsC(60) in the polymerized and in the quenched cubic phase.  相似文献   

16.
n–electron valence state perturbation theory (NEVPT) is a form of multireference perturbation theory where all the zero-order wave functions are of multireference nature, being generated as eigenfunctions of a two–electron model Hamiltonian. The absence of intruder states makes NEVPT an interesting choice for the calculation of electronically excited states. Test calculations have been performed on several valence and Rydberg transitions for the formaldehyde and acetone molecules; the results are in good accordance with the best calculations and with the existing experimental data.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

17.
18.
The high‐spin electronic states for lithium, sodium, and potassium four‐atom clusters were studied. In particular, we performed coupled cluster geometry optimization of the quintet state in tetrahedral geometry. The quintet state of these systems is characterized by having all the valence electron unpaired, giving rise to the so‐called no‐pair bonding. Single‐point full configuration interaction computations on the equilibrium geometries for the various clusters are also presented. The analysis of the valence orbitals in a localized representation confirms the importance of the p atomic orbitals to explain this unusual type of bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
The nature of the chemical bond in UO2 was analyzed taking into account the X-ray photoelectron spectroscopy (XPS) structure parameters of the valence and core electrons, as well as the relativistic discrete variation electronic structure calculation results for this oxide. The ionic/covalent nature of the chemical bond was determined for the UO8 (D4h) cluster, reflecting uranium's close environment in UO2, and the U13O56 and U63O216 clusters, reflecting the bulk of solid uranium dioxide. The bar graph of the theoretical valence band (from 0 to ~35 eV) of XPS spectrum was built such that it was in satisfactory agreement with the experimental spectrum of a UO2 single crystalline thin film. It was shown that unlike the crystal field theory results, the covalence effects in UO2 are significant due to the strong overlap of the U 6p and U 5f atomic orbitals with the ligand orbitals, in addition to the U 6d atomic orbital (AO). A quantitative molecular orbital (MO) scheme for UO2 was built. The contribution of the MO electrons to the chemical bond covalence component was evaluated on the basis of the bond population values. It was found that the electrons of inner valence molecular orbitals (IVMO) weaken the chemical bond formed by the electrons of outer valence molecular orbitals (OVMO) by 32% in UO8 and by 25% in U63O216.  相似文献   

20.
In this article a matrix method for the construction of spin multiplets (spinconfigurations) is suggested in order to solve the multielectron problem for atoms and mulecules by means of configuration interaction.A simple graphical way is given to enumerate configurations and to break their set into subsets of configurations related to the given projection of the total spin of a system S z . It is found that all matrices in the theory of spin multiplets are convex and in cases of two, three, and four electrons are broken into blocks of an order no higher than 3.The model of the solution of the multielectron Schrödinger equation, in which the total spin of core electrons is zero, is considered. In this model the construction of linear combinations of configurations is reduced to the construction of those for but valence electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号