共查询到20条相似文献,搜索用时 15 毫秒
1.
Navaratnarajah Kuganathan Jennifer C. Green 《International journal of quantum chemistry》2008,108(4):797-807
The structure and binding energies of mercury telluride crystals encapsulated within single walled carbon nanotubes (SWNTs) have been studied using density functional theory. The energies of three different pseudo one‐dimensional crystals of HgTe with 4:4, 3:3, and 2:2 coordination are compared. The initial structure for the 4:4 crystal was a 2 × 2 cubic motif derived from rock salt bulk structure, the 3:3 crystal corresponds to a novel structure found when HgTe was intercalated within SWNTs, and the 2:2 crystal is a chain motif derived from cinnabar (HgS) bulk structure. The isolated 3:3 crystal was found to be the most thermodynamically stable of the three structures. Calculations were performed on the 3:3 crystal inserted into three different SWNTs, (15, 0), (9, 9), and (17, 0), in order to investigate the perturbations on the molecular and electronic structure of the crystal and the SWNT, and the energy of formation of the HgTe@SWNT composites. The calculated structures are in good agreement with the experimental high resolution transmission electron microscopy images of the HgTe@SWNT composite. The calculated binding energies and density of states show that the interaction between nanotubes and the HgTe crystals is noncovalent. Since the energy difference of the “free” 4:4 and 3:3 structures is small and of the order of magnitude of the binding energies with the nanotubes, we carried out calculations on 4:4 HgTe structure inserted in to two different SWNTs, (15, 0) and (17, 0). The calculated binding energies show that, when the 4:4 structure is inserted into the smallest tube, the resultant composite has an energy comparable to the 3:3 structure, suggesting that this polymporph may also be found experimentally. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 相似文献
2.
Xiao Wang Zhongjie Du Chen Zhang Congju Li Xiaoping Yang Hangquan Li 《Journal of polymer science. Part A, Polymer chemistry》2008,46(14):4857-4865
Poly(acryloyl chloride) (PACl) was employed to enhance the surface of multi‐walled carbon nanotubes (MWCNTs). MWCNTs were first acid treated to generate hydroxyl groups on the surface, which was reacted with PACl to obtain an encapsulation. The numerous acryloyl chloride groups on the out layer were esterified with a proper amount of ethylene glycol (EG). Subsequently, 4,4′‐methylenebis (phenylisocyanate) (MDI) and 1,4‐butanediol (BDO) were introduced into the system, and a polyurethane (PU) layer was formed in situ. The formation of PU layers on MWCNTs was confirmed by Fourier transform infrared spectrometer (FTIR) and X‐ray photoelectron spectroscope (XPS). The morphology of encapsulated MWCNTs was observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). Thermo gravimetric analysis (TGA) showed the grafted polymer fraction was up to 90%. On introducing the modified MWCNTs into a PU matrix, an increase in tensile strength by 60.6% and improvement in modulus by 6.3% over neat PU was observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4857–4865, 2008 相似文献
3.
The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on.… 相似文献
4.
Davis JJ Coleman KS Azamian BR Bagshaw CB Green ML 《Chemistry (Weinheim an der Bergstrasse, Germany)》2003,9(16):3732-3739
The nano dimensions, graphitic surface chemistry and electronic properties of single walled carbon nanotubes make such a material an ideal candidate for chemical or biochemical sensing. Carbon nanotubes can be nondestructively oxidized along their sidewalls or ends and subsequently covalently functionalized with colloidal particles or polyamine dendrimers via carboxylate chemistry. Proteins adsorb individually, strongly and noncovalently along nanotube lengths. These nanotube-protein conjugates are readily characterized at the molecular level by atomic force microscopy. Several metalloproteins and enzymes have been bound on both the sidewalls and termini of single walled carbon nanotubes. Though coupling can be controlled, to a degree, through variation of tube oxidative pre-activation chemistry, careful control experiments and observations made by atomic force microscopy suggest that immobilization is strong, physical and does not require covalent bonding. Importantly, in terms of possible device applications, protein attachment appears to occur with retention of native biological structure. Nanotube electrodes exhibit useful voltammetric properties with direct electrical communication possible between a redox-active biomolecule and the delocalized pi system of its carbon nanotube support. 相似文献
5.
The preparation of functionalized single walled carbon nanotubes as high efficiency DNA carriers 总被引:1,自引:0,他引:1
Xiao Ying Yang Zun Feng Liu Jie Mao Shu Jing Wang Yan FengMa Yong Sheng Chen 《中国化学快报》2007,18(12):1551-1553
The positively charged single walled carbon nanotubes (SWNTs~ ) were prepared by conjugating with-CONH-C_6H_(12)-NH_3~ . The double strand DNA(dsDNA) chains were loaded onto SWNTs~ via the electrostatic interactions.SWNTs~ shows improved loading efficiency (353.5μg/mg) toward dsDNA compared with that of charged free single walled carbon nanotubes (SWNTs) (82.9μg/mg). 相似文献
6.
7.
F. Chamssedine K. Guérin M. Dubois E. Disa E. Petit Z. El Fawal A. Hamwi 《Journal of fluorine chemistry》2011,132(12):1072-1078
Fluorination of single walled carbon nanotubes was carried out at low temperature in the −191/25 °C range under 1 atm pure fluorine gas. In such conditions, the resulting C–F bonding is significantly weaker than for samples fluorinated at 280 °C. If the fluorination is performed at low temperature, fluorine atoms can be then removed from the host structure by moderated heating until 300 °C or by vacuum without strong damage on the tubes. After thermal defluorination, the resulting sample can be refluorinated similarly than the pristine tubes. 相似文献
8.
Costa PM Sloan J Hutchison JL Green ML 《Chemical communications (Cambridge, England)》2003,(18):2276-2277
Ordered 1D crystals of a complex pentlandite-type alloy with the general composition (Fe,Ni,Co)9S8 have been synthesised inside conical Multi Walled Carbon Nanotubes (MWNTs); the crystals are observed as a by-product of an arc-evaporation synthesis of Double Walled Carbon Nanotubes (DWNTs). 相似文献
9.
JJ Lee A Yamaguchi MA Alam Y Yamamoto T Fukushima K Kato M Takata N Fujita T Aida 《Angewandte Chemie (International ed. in English)》2012,51(34):8490-8494
Orient and conduct: Triphenylene-based discotic ionic liquid crystals (ILCs) with six imidazolium ion pendants can disperse pristine single-walled carbon nanotubes (SWNTs). When the ILC is columnarly assembled, doping with SWNTs results in macroscopic homeotropic columnar orientation. Combination of shear and annealing treatments gives rise to three different orientation states, which determine the anisotropy of electrical conduction. 相似文献
10.
Octadecylamine-functionalised single-walled carbon nanotubes (SWCNTs) were dispersed into nematic liquid crystals (LCs) doped with chiral molecules. The collective orientation of nematic LC molecules in helical layers was manipulated by varying dopant concentration. Highly anisotropic nature of SWCNTs enhanced the anisotropy of the LC as confirmed by polarised fluorescence spectroscopy. The π–π interaction of SWCNTs present in the planar alignment layers and twisted nematic LC molecules affects the molecular relaxation process. An irreversible electro-optic memory in the material has been observed. 相似文献
11.
Herein, we perform a comparative study on the addition of azomethine ylides to graphene, carbon nanotubes, C60, ethene, pyrene and a C48H18 hydrocarbon. The calculated binding energies and free energy corrections suggest that the addition of azomethine ylide to perfect graphene is not spontaneous (ΔG > 0). However, the presence of Stones–Wales defects significantly increases reactivity: the binding energy between SW‐defective graphene and the azomethine ylide is 0.83 eV, close to that determined for a (5,5) SWCNT. The electronic properties of the sheet are not modified by the 1,3 cycloaddition. The binding energies determined for the addition of an azomethine ylide to a (5,5) SWCNT are significantly lower than previously reported. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 相似文献
12.
Hsuan‐Ming Huang I‐Chun Liu Ching‐Yu Chang Hung‐Chieh Tsai Chuan‐Hsiao Hsu Raymond Chien‐Chao Tsiang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(22):5802-5810
A new method was developed for preparing polystyrene‐functionalized multiple‐walled carbon nanotubes (MWNTs) through the termination of anionically synthesized living polystyryllithium with the acyl chloride functionalities on the MWNTs. The acyl chloride functionalities on the MWNTs were in turn obtained by the formation of carboxyls via chemical oxidation and their conversion into acyl chlorides. The polystyrene‐functionalized MWNTs had good dispersion in common organic solvents, and this indicated good compatibility for the preparation of styrenic nanocomposite materials. The synthesis results and characterization data for the functionalized MWNTs, collected via Fourier transform infrared, thermogravimetric analysis, solid‐state NMR, and electron microscopy, are presented and discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5802–5810, 2004 相似文献
13.
Deformation of single‐walled carbon nanotubes by interaction with graphene: A first‐principles study 下载免费PDF全文
Xiao Wang Juan Yang Ruoming Li Hong Jiang Yan Li 《Journal of computational chemistry》2015,36(10):717-722
The interaction between single‐walled carbon nanotubes (SWNTs) and graphene were studied with first‐principles calculations. Both SWNTs and single‐layer graphene (SLG) or double‐layer graphene (DLG) display more remarkable deformations with the increase of SWNT diameter, which implies a stronger interaction between SWNTs and graphene. Besides, in DLG, deformation of the upper‐layer graphene is less than in SLG. Zigzag SWNTs show stronger interactions with SLG than armchair SWNTs, whereas the order is reversed for DLG, which can be interpreted by the mechanical properties of SWNTs and graphene. Density of states and band structures were also studied, and it was found that the interaction between a SWNT and graphene is not strong enough to bring about obvious influence on the electronic structures of SWNTs. © 2015 Wiley Periodicals, Inc. 相似文献
14.
Néstor David Espinosa-Torres Alfredo Guillén-López Javier Martínez-Juárez José Álvaro David Hernández de la Luz Ángel Pedro Rodríguez-Victoria Jesús Muñiz 《International journal of quantum chemistry》2019,119(17):e25974
Density functional theory and molecular dynamics (MD) calculations were used to evaluate electronic structure properties in a series of nanotubes with smallest possible diameters (both types: armchair and zigzag), and the corresponding chiral nanotubes (8,m) for 0 ≤ m ≤ 8. The calculations were performed considering a length of 16.5 Å. We evaluated a set of 26 combinations of dual nanotubes (armchair/armchair, zigzag/zigzag, armchair/zigzag, and zigzag/armchair), where the first label corresponds to the outer tube. We extended our study with nine additional systems of double-walled carbon nanotubes (DWCNT) with semiconductor nature. In this regard, we gave insight into the semiconductive or metallic nature inherited to the dual tubes. DWCNT systems were possible to construct by maintaining a radial distance of 3.392 Å for the armchair/armchair arrangement and 3.526 Å for the zigzag/zigzag type. It was considered as a reference, the interplanar distance of graphite (3.350 Å). Electronic transport calculations were also performed on selected DWCNT systems in order to understand the role played by the different symmetries under study. It was evidenced that the electronic structure nature of the systems rules the ability to transport electrons through the DWCNT interface. 相似文献
15.
Models of new cubic crystals from carbon and boron-nitrogen (BN) nanotubes are proposed. Within electronic density functional theory, their structural, elastic, and electronic properties are studied. These isotropic nanotubular crystals are found to have extremely high elastic modules B (~490–650 GPa) and low compressibility β (~0.0020–0.0015 1/GPa) and maintain the conductivity typical of their “building blocks,” i.e. isolated carbon and BN nanotubes. 相似文献
16.
Peng Zou Gang‐Yin Shi Cai‐Yuan Pan 《Journal of polymer science. Part A, Polymer chemistry》2009,47(14):3669-3679
A simple and unique strategy for preparation of large‐compound vesicle (LCV)‐encapsulated multiwalled carbon nanotubes (MWCNTs) has been developed, and this involves dispersion of MWCNTs in H‐shaped copolymers solution in DMF and encapsulation of MWCNTs with LCVs formed from hydrolysis and polycondensation of ? Si(OCH3)3 groups in the amphiphilic H‐shaped copolymers, (PTMSPMA)2PEG(PTMSPMA)2. This unique noncovalent approach is nondestructive, and the original structure of MWCNTs remains in the resultant MWCNTs/LCVs nanocomposites. The morphologies of nanocomposites LCVs/MWCNTs are controlled by the chain length ratio (NPTMSPMA/NPEG) of PTMSPMA to PEG. For the H‐shaped copolymers with NPMSPMA/NPEG ≤ 1.7, they self‐assembled to form LCVs with dense cavities in the presence of MWCNTs in a mixture of DMF/H2O. When this ratio was more than 2.0, the large‐compound micelle‐wrapped MWCNTs were produced. This approach is potentially useful for preparation of MWCNTs encapsulated with various morphologies of polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3669–3679, 2009 相似文献
17.
Herein, we report the fabrication of glycidyl methacrylate (GMA) polymeric conjugates of shortened multi‐walled carbon nanotubes (sMWCNT). The synthesis method involves the attachment of initiator on the surface of nanotubes followed by surface initiated atom transfer radical polymerization (SI‐ATRP) of GMA from the initiator‐bound sMWCNT surface. This is achieved by the procedure consisting of three important steps: introduction of amino groups onto the sMWCNT and attachment of polymerization initiator, 2‐bromo‐2‐methylpropinonyl bromide, and polymerization of GMA. The structure and properties of the resultant polymeric conjugates were characterized by Fourier transform infrared (FT‐IR) spectroscopy, Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SEM. The FT‐IR analysis of polymeric conjugates shows infrared (IR) peaks characteristic of GMA. AFM, TEM and SEM images clearly show the formation of poly(glycidyl methacrylate)(PGMA) polymer on sMWCNT surface. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
《International journal of quantum chemistry》2018,118(14)
The structural and flow characteristics of fluids within carbon nanotube (CNT) is dictated by the interaction of fluid molecules within the nanocavity of CNT. Therefore, in the present study, dispersion corrected density functional theory has been used to investigate the structure and interaction of polar and nonpolar molecules within CNT. The present study shows that there is profound effect on the interaction due to dispersion. The interaction energy of the confined water was found to be reduced with increasing distance of the water molecule from the wall of the CNT. The water is preferentially adsorbed over methane due to stronger interaction with CNT over methane. Further, water is preferentially adsorbed over methanol molecule when interaction is calculated without dispersion but after inclusion of dispersion interaction, the calculated results show that the methanol–CNT interaction is stronger than that of water molecule and hence preferentially adsorbed within the CNT as revealed from MD simulation. The present calculation reveals that that the effect of CNT confinement on the IR spectra of the single file water is quite considerable compared to the IR spectra of tetrahedral bulk water cluster. Therefore, the present results might be useful for the separation of polar molecule from nonpolar molecule during fabrication of CNT‐based filter and purification system. 相似文献
19.
Haoyu Tang Chang‐Uk Lee Donghui Zhang 《Journal of polymer science. Part A, Polymer chemistry》2011,49(14):3228-3238
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) having well‐defined polymer molecular weight (Mn = 7.5–21.1 kg·mol?1) and molecular weight distribution (PDI = 1.05–1.20) by a graft‐to method. Toluene solutions containing 5 wt % free PBLG and variable amounts of PBLG‐functionalized SWCNTs (PBLG‐SWCNTs) form gels at room temperature. Differential scanning calorimetry (DSC) analysis reveals that the gelation occurs thermoreversibly, in accord with previous studies on the pristine PBLG/toluene gels. The heat of gel melting (ΔHm) is slightly elevated for the composite gels compared with the pristine gel, which suggests enhanced interactions between PBLGs in the former. But the gelation temperatures of the composites are unaffected by the presence of PBLG‐SWCNTs. Small‐angle X‐ray scattering (SAXS) analysis of the composite and pristine gels at different temperatures by the Guinier method suggests that PBLG‐SWCNTs promote interactions between PBLG rods, as indicated by the larger PBLG bundle size with increasing PBLG‐SWCNT content in the gel and the melt state. W/SAXS analysis of the dry gels reveals that PBLG‐SWCNTs induce significant changes in the PBLG packing order, resulting in a nematic phase, in contrast to a weakly ordered smectic C phase containing tilted PBLG rods that is observed in the pristine gel. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
20.
The baclofen‐MWCNTs‐Pd nanocatalyst was synthesized through covalent grafting of baclofen molecules onto surface‐modified carbon nanotubes and immobilizing Pd nanoparticles by the baclofen ligands. The chemical structure of the produced nanocatalyst was studied by Raman spectroscopy, Fourier transform‐infrared spectroscopy, energy‐dispersive spectroscopy (EDS), elemental mapping and inductively coupled plasma analysis. Also, its surface morphology was determined using the scanning and transmission electron microscopy techniques. Furthermore, the obtained baclofen‐MWCNTs‐Pd nanocatalyst is demonstrated to exhibit very high activity as a heterogeneous phosphine‐free catalyst in Sonogashira cross‐coupling of aryl halides by giving good to excellent yields of different products. In addition, the nanocatalyst can be reused four times without any significant leaching or loss of activity. 相似文献