首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional theory and ab initio calculations were performed to elucidate the hydrogen interactions in (H2O4)n (n = 1–4) clusters. The optimized geometries, binding energies, and harmonic vibrational frequencies were predicted at various levels of theory. The trans conformer of the H2O4 monomer was predicted to be the most stable structure at the CCSD(T)/aug‐cc‐pVTZ level of theory. The binding energies per H2O4 monomer increased in absolute value by 9.0, 10.1, and 11.8 kcal/mol from n = 2 to n = 4 at the MP2/cc‐pVTZ level of theory (after the zero‐point vibrational energy and basis set superposition error corrections). This result implies that the intermolecular hydrogen bonds were stronger in the long‐chain clusters, that is, the formation of the longer chain in the (H2O4)n clusters was more energetically favorable.  相似文献   

2.
45 isomers of TinNm (n + m = 5, 6) clusters, including linear, some planar and some stero configurations, have been predicted by density functional theory method. For five-atom clusters Ti3N2 and Ti2N3, the most stable structures are trigonal bipyramid in D3h symmetry, and for TiaN cluster, the isomer with one nitrogen atom occupying the center of quasi-tetrahedron is the most stable. In the isomers of Ti4N2 and Ti3N3, the planar networks are more stable, but for Ti2N4, the six-membered ring configuration is the most favorable. Most linear structures can form weak-strong bonds alternately with higher energy. As regards to planar structures, the more Ti-N bonds are formed, the more stable they will be; for stero closed polyhedral isomers, their energies are lower.  相似文献   

3.
The stabilities Ben and Bn clusters (4 ≤ n ≤ 8) based on the vibrational analysis were investigated by ab initio MO calculations. The computations were performed by using a 3-21G basis set at the R(U)HF level and at the R(U)MP4 level with the HF optimized structures. Spin-multiplicities were also considered up to quintet states (n ≤ 7). Of the 120 species that were treated, half of them were considered stable and some of these stable species were obtained by the deformations of transition state and unstable species, following the imaginary normal modes. The transformation barrier between the transition state species and corresponding stable ones was presented. It was found that there were two types of stable clusters: (1) a low symmetry species with lower frequencies and lower geometrical change barriers and (2) a high symmetry one with higher frequencies. The former type was considered as a structural “soft” species and the latter as a “hard” species.  相似文献   

4.
Using gradient‐corrected density functional theory, we have comparatively studied the adsorption properties of diatomic molecules N2 and NO on vanadium clusters up to 13 atoms. Spontaneous dissociation is found for N2 adsorbing on Vn with n = 4–6, 12, and for NO with n = 3–12, respectively, whereas for the rest of the clusters, N2 (NO) molecularly adsorbs on the cluster for all the possible sites. The incoming N2 retains the magnetism of Vn except for V2 and V6 whose moments are quenched from 2 μB to zero. Consequently, the moments of VnN2 (n = 2–13) show even/odd oscillation between 0 and 1 μB. On the adsorption of NO, the magnetic moments of Vn with closed electronic shell are raised to 1 μB at n = 4, 8, and 10, and 3 μB at n = 12, whereas for open shell clusters, their magnetic moments increase for n = 5 and 9 and decrease for n = 2, 3, 5–7, 11, and 13 by 1 μB. These findings are rationalized by combinatory analysis from several aspects, for example, the geometry and stability of bare clusters, charge transfer induced by the adsorption, feature of frontier orbitals, and spin density distribution. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The structural properties of neutral and ionic AlnO2 (n = 1–10) clusters have been systematically investigated using the density functional method B3LYP with a standard 6‐311+G(d) basis set. The calculated results show that in the AlnO, AlnO2, and AlnO (n ≥ 3) clusters, O atoms tend to penetrate into the aluminum clusters with some Al atoms moving outward. The binding energies and natural charges populations indicate that the oxygen‐etching is generally stronger in the order Al < Aln < Al for n < 3, and Al > Aln > Al for n ≥ 3. To further understand the mechanism of interaction between Al and O2, the adsorption of O2 on the Al(111) surface was studied using the density functional theory with plane wave pseudopotential method. The calculated results are consistent with the experimental observation that the O2 molecule would dissociate on the Al(111) surface and be adsorbed in adjacent hollow sites, forming a local structure of Al3O–Al3O. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
7.
The geometric configurations and electronic structures of the TinC2n (n=1–6) clusters were studied by using the quantum chemical ab initio density functional theory (DFT) method. Our studies showed that these TinC2n (n=1–6) could grow gradually to form cyclic clusters through the subunits TiC2 bonding to each other by C C or Ti C bond. The result could explain the existing experimental fact. The studies might also be helpful to the knowledge of the formation mechanism of the Met‐Cars. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 313–318, 1999  相似文献   

8.
The structures, stabilities, nature of bonding, and potential energy surfaces of low‐energy isomers of planar CnB5 (n = 1?7) have been systematically explored at the CCSD(T)/6‐311+G(d)//B3LYP/6‐311+G(d) level. Incremental binding energy (IBE) and second order energy difference (Δ2E) analyses demonstrate that CnB5 clusters with even n have relatively higher stability. The nature of bonding in these clusters is discussed based on valence molecular orbital (VMO), and Mayer bond order (MBO). Hückel (4n + 2) rule and nucleus‐independent chemical shift (NICS) values suggest that the ground states of C3B5, C4B5, and C7B5 have π aromaticity. VMO, electron localization function (ELF), adaptive natural density partitioning (AdNDP), and NICS analyses reveal the double aromaticity of C3B5 cation. CB5 and C3B5 are stable both thermodynamically and kinetically based on isomerization analysis. In addition, the simulated IR spectra are expected to be helpful for future experimental studies of these clusters.  相似文献   

9.
10.
The interaction of O2 with the doped icosahedral X@Al12 (X = Al?, P+, C, Si) clusters with 40 valence electrons were investigated using density functional theory methods. A different behavior exhibited between Al13? and X@Al12 (X = P+, C, Si) when they interact with O2. The dissociation of O2 on Al13? is strongly dependent on spin state of oxygen molecule. But X@Al12 (X = P+, C, and Si) is not the case. The transform of spin moment from O2 to Al13? is much faster. Small molecularly binding energy and relatively high energy barrier show that these clusters are all reluctant reacts with the ground state O2. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

11.
Density functional theory (DFT) calculations within the framework of generalized gradient approximation have been used to systematically investigate the adsorption of nitric oxide (NO) molecule on neutral, cationic, and anionic Pdn (n = 1–5) clusters. NO coordinate to one Pd atom of the cluster by the end‐on mode, where the tilted end‐on structure is more favorable due to the additional electron in the π* orbital. On the contrary, in the neutral and cationic Pd2 system, NO coordinates to the bridge site of cluster preferably by the side‐on mode. Charge transfer between Pd clusters and NO molecule and the corresponding weakening of N? O bond is an essential factor for the adsorption. The N? O stretching frequency follow the order of cationic > neutral > anionic. Binding energy of NO on anionic clusters is found to be greater than those of neutral and cationic clusters. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
13.
The possible geometrical structures and relative stability of silicon–sulfur clusters (SiS2) (n=1–6) are explored by means of density functional theory (DFT) quantum chemical calculations. We also compare DFT with second‐order Møller–Plesset (MP2) and Hartree–Fock (HF) methods. The effects of polarization functions, diffuse functions, and electron correlation are included in MP2 and B3LYP quantum chemical calculations, and B3LYP is effective in larger cluster structure optimization, so we can conclude that the DFT approach is useful in establishing trends. The electronic structures and vibrational spectra of the most stable geometrical structures of (SiS2)n are analyzed by B3LYP. As a result, the regularity of the (SiS2)n cluster growing is obtained, and the calculation may predict the formation mechanism of the (SiS2)n cluster. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 280–290, 2001  相似文献   

14.
In this paper, the second and third order polarizabilities of small Ga(n)As(m) (n + m=4-10) clusters are systematically investigated using the time dependent density functional theory (TDDFT)6-311+G* combined with the sum-over-states method (SOSTDDFT6-311+G*). For the static second order polarizabilities, the two-level term (beta(vec.2)) makes a significant contribution to the beta(vec) for all considered Ga(n)As(m) clusters except for the Ga3As4 cluster. And, for the static third order polarizabilities, the positive channel (gamma(II)) makes a larger contribution to gamma(tot) than the negative channel (gamma(I)). Similar to the cubic GaAs bulk materials, the small Ga(n)As(m) cluster assembled materials exhibit large second order (1 x 10(-6) esu) and third order susceptibilities (5 x 10(-11) esu). The dynamic behavior of beta(-2omega; omega, omega) and gamma(-3omega; omega, omega, omega) show that the small Ga(n)As(m) cluster will be a good candidate of nonlinear optical materials due to the avoidance of linear resonance photoabsorption.  相似文献   

15.
The optimized spatial structures of the small clusters (with N up to 33) formed by an increasing number of (4)He atoms, which act as a microsolvent surrounding the OH(+) ionic molecular dopant, are obtained using a sum-of-potentials scheme corrected by three-body (3B) effects. The most stable structures are generated using the type of genetic algorithm described herein, and the sequential formation of regular shell structures is analyzed in detail. Possible quantum corrections for both the solvent distributions and the stable energetics are analyzed and discussed.  相似文献   

16.
The local distortions and electron paramagnetic resonance parameters for Cu2+ in the mixed alkali borate glasses xNa2O‐(30–x)K2O‐70B2O3 (5 ≤ x ≤ 25 mol%) are theoretically studied with distinct modifier Na2O compositions x. Owing to the Jahn–Teller effect, the octahedral [CuO6]10− clusters show significant tetragonal elongation ratios p ~19% along the C4 axis. With the increase of composition x, the cubic field parameter Dq and the orbital reduction factor k exhibit linearly and quasi‐linearly decreasing tendencies, respectively, whereas the relative tetragonal elongation ratio p has quasi‐linearly increasing rule with some fluctuations, leading to the minima of g factors at x = 10 mol%. The composition dependences of the optical spectra and the electron paramagnetic resonance parameters are suitably reproduced by the linear or quasi‐linear relationships of the relevant quantities (i.e., Dq, k, and p) with x. The above composition dependences are analyzed from mixed alkali effect, which brings forward the modifications of the local crystal‐fields and the electronic cloud distribution around Cu2+ with the variation of the composition of Na2O.  相似文献   

17.
Computations on the systems of (H2GaN3)n (n = 1–4) are performed using the density functional theory (DFT)/B3LYP method with different basis sets. (H2GaN3)2 possessing D2h symmetry is found to exhibit the planar Ga2N2 ring structure. (H2GaN3)3 involving a six‐membered Ga3N3 ring is found to exhibit two minima with very similar binding energies (ca. −235 ∼ −231 kJ · mol−1). One minimum is the newly found boat‐like conformation possessing Cs symmetry. Another minimum possessing C3v symmetry is the chair‐like conformation. (H2GaN3)4 occurs in several structures with Ga4N4 eight‐membered ring structures that correspond to minima with slight energy differences among them. The structural changes of the clusters are large compared with the monomer. Frequency calculations are carried out on each optimized structure, and their infrared (IR) spectra are discussed. Thermodynamic properties demonstrate that the systems of H2GaN3 occur at dimer–trimer–tetramer equilibrium, and the trimer is the main component. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

18.
Low‐lying equilibrium geometric structures of AlnN (n = 1–12) clusters obtained by an all‐electron linear combination of atomic orbital approach, within spin‐polarized density functional theory, are reported. The binding energy, dissociation energy, and stability of these clusters are studied within the local spin density approximation (LSDA) and the three‐parameter hybrid generalized gradient approximation (GGA) due to Becke–Lee–Yang–Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static dipole polarizabilities are calculated for the ground‐state structures within the GGA. It is observed that symmetric structures with the nitrogen atom occupying the internal position are lowest‐energy geometries. Generalized gradient approximation extends bond lengths as compared with the LSDA lengths. The odd–even oscillations in the dissociation energy, the second differences in energy, the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps, the ionization potential, the electron affinity, and the hardness are more pronounced within the GGA. The stability analysis based on the energies clearly shows the Al7N cluster to be endowed with special stability. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

19.
Geometry optimization of acetylene clusters (HCCH)n in the range of n ≤ 55 was carried out with a recently proposed intermolecular potential consisting of Morse potentials, damped dispersion terms, and damped Coulomb terms. The heuristic method developed by the present author was used in the optimization: optimal geometries were searched by using geometry perturbations and subsequent local optimizations. The calculations were repeated until the global minimum was found for each cluster at least three times. The obtained results were analyzed to examine structural evolution of the clusters. The geometries of the clusters with n ≥ 25 were similar to the geometry in the cubic crystal of acetylene whereas smaller clusters take icosahedron‐based geometries. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
Adsorption of pyridine on Nin‐clusters (with n = 2,3,4) is studied by quantum chemical calculations at B3LYP/LANL2DZ and B3LYP/6‐311G** levels. First, Nin‐clusters are investigated for accessible structure and electronic states. The lowest electronic state with four unpaired electrons is predicted for Ni4‐cluster based on geometry and electronic structure, showing that the cluster stability nicely depends on number of unpaired electrons. Correction for basis set superposition error of metal‐metal bond is appreciable and has increasing effect on cluster binding energy. Next, adsorption of pyridine in planar and vertical adsorption modes is investigated on rhombus Ni4‐cluster. The vertical mode is found (at B3LYP/6‐311G** level) as the most favorable adsorption mode. Adsorption energy (ΔEads) depends on cluster size; adsorption on Ni4‐cluster is most favorable with ΔEads = ?207.33 kJ/mol. The natural bond orbital analysis reveals the charge transfer in adsorbate/metal‐cluster. Results of investigations for the Ni2‐ and Ni3‐cluster are also presented. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号