首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrothermal investigations in the system MgO/B2O3/P2O5(/H2O) yielded two new magnesium borophosphates, Mg2(H2O)[BP3O9(OH)4] and Mg(H2O)2[B2P2O8(OH)2]·H2O. The crystal structures were solved by means of single crystal X‐ray diffraction. While the acentric crystal structure of Mg2(H2O)[BP3O9(OH)4] (orthorhombic, P212121 (No. 19), a = 709.44(5) pm, b = 859.70(4) pm, c = 1635.1(1) pm, V = 997.3(3) × 106 pm3, Z = 4) contains 1D infinite chains of magnesium coordination octahedra interconnected by a borophosphate tetramer, Mg(H2O)2[B2P2O8(OH)2]·H2O (monoclinic, P21/c (No. 14), a = 776.04(5) pm, b = 1464.26(9) pm, c = 824.10(4) pm, β = 90.25(1)°, V = 936.44(9) × 106 pm3,Z = 4) represents the first layered borophosphate with 63 net topology. The structures are discussed and classified in terms of structural systematics.  相似文献   

2.
Rb2Co3(H2O)2[B4P6O24(OH)2]: A Borophosphate with ‐Tetrahedral Anionic Partial Structure and Trimers of Octahedra (Co O12(H2O)2) Rb2Co3(H2O)2[B4P6O24(OH)2] is formed under mild hydrothermal conditions (T = 165 °C) from mixtures of RbOH(aq), CoCl2, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure (orthorhombic system) was solved by X‐ray single crystal methods (space group Pbca, No. 61; R‐values (all data): R1 = 0.0699, wR2 = 0.0878): a = 950.1(1) pm, b = 1227.2(2) pm, c = 2007.4(2) pm; Z = 4. The anionic partial structure consists of tetrahedral [B4P6O24(OH)28–] layers, which contain three‐ and nine‐membered rings. CoII is octahedrally coordinated by oxygen and oxygen and H2O ligands, respectively (coordination octahedra CoO6 and CoO4(H2O)2). Three adjacent coordination octahedra are condensed via common edges to form trimeric units (CoO12(H2O)2). The oxidation state +2 of cobalt was confirmed by magnetic measurements. The octahedral trimers are quasi‐isolated. No long‐range magnetic ordering occurs down to 2 K. Rb+ is disordered over three crystallographically independent sites within channels of the structure running parallel [010]; the coordination sphere of Rb+ is formed by nine oxygen species of the tetrahedral layers, one OH group and one H2O molecule.  相似文献   

3.
Two novel borophosphates, MII(C4H12N2)[B2P3O12(OH)] (MII = Co, Zn), exhibiting open frameworks, have been synthesized by hydrothermal reactions (T = 165 °C). The crystal structures of the isotypic compounds have been determined both at 293 K (orthorhombic, Ima2 (no. 46), Z = 4; MII = Co: a = 12.4635(4) Å, b = 9.4021(4) Å, c = 11.4513(5) Å, V = 1341.90 Å3, R1 = 0.0202, wR2 = 0.0452, 2225 observed reflections with I > 2σ(I); MII = Zn: a = 12.4110(9) Å, b = 9.4550(5) Å, c = 11.4592(4) Å, V = 1344.69 Å3, R1 = 0.0621, wR2 = 0.0926, 1497 observed reflections with I > 2σ(I)). Distorted CoO6‐octahedra and ZnO5‐square‐pyramids, respectively, share common oxygen‐corners with BO4‐, PO4‐ and (HO)PO3‐tetrahedra. The tetrahedral groups are linked via common corners to form infinite loop‐branched borophosphate chains [B2P3O12(OH)4–]. The open framework of MII‐coordination polyhedra and tetrahedral borophosphate chains contains a three‐dimensional system of interconnected structural channels running along [100], [011] and [011], respectively, which are occupied by di‐protonated piperazinium ions.  相似文献   

4.
A new metal borophosphate PbII4{Co2[B(OH)2P2O8](PO4)2}Cl ( 1 ), containing both Pb2+ cations and Cl anions, was hydrothermally synthesized and characterized by powder X‐ray diffraction, ICP, TG/DTA, and FTIR spectroscopic analyses. The crystal structure determination from single‐crystal X‐ray diffraction reveals that compound 1 crystallizes in the trigonal space group R c (No. 167), a = 9.7513(7) Å, c = 91.060(13) Å, V = 7498.7(13) Å3 and Z = 18. Its structure features a new cobalt borophosphate layer {Co2[B(OH)2P2O8](PO4)2}7– built up from CoO5 square pyramids, [B(OH)2P2O8]5– borophosphate trimers and PO4 tetrahedra. Extra‐framework Pb2+ and Cl ions are located at the vacancy of layers to achieve the charge neutrality of the framework. Magnetic measurements indicate that antiferromagnetic interactions exist between Co2+ ions with a negative Weiss constant of –20.3 K.  相似文献   

5.
A new protonated borophosphate (H3O)Mg(H2O)2[BP2O8]·H2O ( 1 ) was synthesized under mild hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, FTIR spectroscopy and TG‐DTA. The compound crystallizes in the hexagonal system, space group P6(1)22 (No 178), a = 9.4462(7) Å, c = 15.759(2) Å, V = 1217.8(2) Å3, and Z = 6. There exist infinite helical $^1_\infty$ {[BP2O8]3–} ribbons built up from corner‐sharing PO4 and BO4 tetrahedra, which are connected by MgO4(H2O)2 leading to an infinite three‐dimensional open‐framework. The H3O+ ions are located at the free thread of the helical ribbons, whereas crystallized water occupy the channels of the helical ribbons. The dehydration of the compound occurs at a higher temperature which is presumably due to the anisotropic hydrogen bonds in the crystal structure. The luminescent properties of the compound were studied.  相似文献   

6.
金属磷酸盐材料在吸附、离子交换、离子传导和催化剂方面有潜在的应用前景[1~5]. 近年来, 通过水热反应合成了一些A-V-P-O化合物. 在这些化合物中, A一般为碱金属或有机阳离子, 如层状结构的[H2N(C4H8)2NH2][(VO)4(OH)4(PO4)2][6] 和[H2N(C2H4)3NH2][(VO)8(HPO4)3(PO4)4*(OH)2]*2H2O[6], 一维链状结构的 [H2NCH2CH2NH3(VO)(PO4)][7], 手性双螺旋结构的 [(CH3)2NH2]K4[(VO)10(H2O)2(OH)4(PO4)7]*H2O[8]以及具有三维骨架结构的化合物 [H3N(CH2)3NH3K(VO)3(PO4)3][9], [H3N(CH2)3NH3]2[V(H2O)2(VO)6(OH)2(HPO4)3(PO4)5]*3H2O[10]和[H3N(CH2)2NH3][(VO)3(H2O)2(PO4)2(HPO4)4][11].  相似文献   

7.
Synthesis and Crystal Structure of Vanadium(III) Borophosphate, V2[B(PO4)3] By reaction of boron phosphate, BPO4, and vanadium(IV)‐oxide, VO2, at 1050 °C a hitherto unknown vanadium(III)‐borophosphate is formed. Its composition was found to be V2BP3O12, its structure was elucidated by single crystal X‐ray diffraction, the cell parameters are: a = b = 13.9882Å; c = 7.4515Å; α = β = 90°, γ = 120°; Z = 6; space group: P6 3/m. Noteworthy features of the structure are V2O9 units (two VIIIO6 octahedra connected via their faces) and isolated trisphosphatoborate groups, B(PO4)3. By shared oxide ions, the aforementioned groups are interconnected, thus forming a three dimensional network. The structural relation between the title compound and an analogous chromium compound is discussed.  相似文献   

8.
Abstract. The cadmium borophosphate compound Cd3[B2P4O14(OH)4] was synthesized under mild hydrothermal conditions. The crystal structure was determined by single‐crystal X‐ray diffraction [triclinic, space group P$\bar{1}$ (no. 2), a = 5.4362(11) Å, b = 8.2190(16) Å, c = 8.3918(17) Å, and α = 111.87(3)°, β = 104.63(3)°, γ = 90.73(3)°, V = 334.29(12) Å3 and Z = 1]. The 3D open framework of the title compound is constructed from BO3(OH) tetrahedra and 2D layers along the [100] direction. The resulting framework contains twisted eight‐membered rings that form 1D channels.  相似文献   

9.
Borophosphates, as potential microporous materials, have drawn much attention in recent years and show rich chemistry[1-3]. Although many compounds with transition metals have been reported, compounds with the p-block main group elements participating in the framework are rare[4] The title compound has been synthesized by mild hydrothermal methods and crystal structure characterized by X-ray single crystal methods. Crystallographic data:monoclinic,C2/c (No. 15), a=10.408(3), b=8.094(2),c=9.099(2) Å, β=116.64(2), Z=4, R=0.0246,Rw=0.0676. The crystal structure contains isolated anions[(OH)O2P1/2-O1/2B(OH)2O1/2-O1/2PO3]4-. Geometrically, four GaO6 groups with four PO4 groups form an eight-member ring by sharing comers resulting to a two dimensional layer in be plane. The layers are joined by BO4 group through comer sharing with GaO6 and PO4 and result to a three dimensional network structure. A 350pm x 600pm open channel along c-axis can be seen (figure below) and occupied by Na cations.  相似文献   

10.
多金属氧酸盐因其在医药临床、工业催化和功能材料等方面的广泛应用而引起人们的关注[1~7]. 由于钒化合物具有令人感兴趣的结构以及在材料领域中的重要的应用而倍受关注. 在以往的合成中, 常压溶液合成是主要手段, 利用水热合成方法制备多金属氧酸盐配合物晶体是近几年来国际上刚刚兴起的一项研究工作, 通过该方法已合成出一批具有新颖结构的层状、链状、多孔、高聚合度化合物[8~11], 一些已用于药物和催化剂的研究工作中. V-O体系化合物的合成与表征近来已引起人们的极大兴趣, 如: [VⅣVⅤ2O7(phen)]n[12]是一含有混合价钒的层状结构; Ni(en)3(VO3)2[13], Cu(dien)V2O6*H2O[14]是一维链状结构. 为了探究水热条件下钒物种的反应特性及生成规律, 制备新的钒配合物晶体, 目前我们正在积极开展这方面的研究并取得了一定成果.  相似文献   

11.
Two novel lanthanide complexes with the formula [Er4(tp)6(H2O)6] ( 1 ) and [Lu(tp)1.5(H2O)3] ( 2 ) (tp = terephthalate) were synthesized by treating Er(NO3)3, Lu(NO3)3 with terephthalic acid under hydrothermal conditions, respectively. The structures were determined by X‐ray crystallography. The crystal 1 is of orthorhombic, space group Pbca(61) with a = 9.6656(2) Å, b = 26.2338(5) Å, c = 37.9022(7) Å, C48H36Er4O30, M = 1761.81, Z = 8, V = 9610.69(32) Å3, F(000) = 6688, R1 = 0.0326 and ωR = 0.0650. The crystal of 2 is of triclinic, space group with a = 7.8204(1) Å, b = 9.5355(1) Å, c = 10.6348(1) Å, α = 68.869(1)°, β = 71.081(1)°, γ = 75.151(1)°, C24H24Lu2O18, M = 475.19, Z = 2, V = 690.98(1) Å3, F(000) = 454, R1 = 0.0215 and ωR = 0.0474. Both of the two coordination polymers exhibit sandwich‐like packing structures.  相似文献   

12.
RbFe[BP2O8(OH)]: A New Borophosphate Containing Open-Branched Tetrahedral Vierer-Einfach Chains RbFe[BP2O8(OH)] is formed under mild hydrothermal conditions (T = 165–170 °C) from a mixture of RbOH(aq), FeCl2 · 4 H2O, H3BO3 and H3PO4. The crystal structure of the monoclinic compound was solved by x-ray single crystal methods (space group P21/c, No. 14): a = 935.8(5) pm, b = 833.9(6) pm, c = 965.6(5) pm; β = 101.69(4)°; Z = 4. The anionic partial structure contains open-branched vierer-einfach chains [BP2O8(OH)]4–, which are formed by alternating borate and phosphate tetrahedra sharing common corners. Fe3+ is in an octahedral coordination (FeO5(OH)), while Rb+ is irregularly coordinated by ten oxygen-functions of neighbouring tetrahedra.  相似文献   

13.
Na1.89Ag0.11[BP2O7(OH)] and Na2[BP2O7(OH)] – Isotypic Borophosphates Containing Layered Tetrahedral Blocks The isotypic borophosphates Na1.89Ag0.11[BP2O7(OH)] and Na2[BP2O7(OH)] were grown under mild hydrothermal conditions (T = 165–170 °C). The crystal structures were solved by single crystal methods in the case of Na1.89Ag0.11[BP2O7(OH)] and by refinement of powder data (Rietveld method) for Na2[BP2O7(OH)], respectively (orthorhombic, Pna21 (No. 33); a = 683.98(14)/682.36(1) pm, b = 2086.5(4)/2079.11(4) pm, c = 1318.9(3)/1314.46(3) pm; Z = 12). The compounds contain a complex two-dimensional structure consisting of layered tetrahedral blocks, which are formed by six- and eight-membered rings of tetrahedra. The Na+/Ag+-ions are located inside and near the surface of the ‘layer blocks' and are five-, six- and sevenfold coordinated by oxygen.  相似文献   

14.
A novel borophosphate‐hydrate, (Ni3–xMgx)[B3P3O12(OH)6] · 6 H2O (x ≈ 1.5), has been prepared by hydrothermal synthesis (T = 170 °C) from a mixture of NiCl2 · 6 H2O, Mg(OH)2, B2O3 and H3PO4. The crystal structure was determined at 293 K from single‐crystal X‐ray diffraction data (trigonal, R3c (no. 167), a = 14.957(10) Å, c = 13.812(6) Å, V = 2676(2) Å3, Z = 6, R1 = 0.0276, wR2 = 0.0714 for 779 observed reflections with I > 2σ(I)). The crystal structure contains unbranched six‐membered rings [B3P3O12(OH)6]6– of alternating corner linked borate and phosphate tetrahedra, which are stacked along [001] and connected via MIIO2(OH)2(H2O)2 coordination polyhedra. Hydrogen bonding between the tetrahedral six‐membered rings and MIIO2(OH)2(H2O)2 octahedra leads to a further cross‐linking. With respect to the arrangement of isolated six‐membered tetrahedral rings the crystal structure of this borophosphate‐hydrate is closely related to the cyclo‐hexasilicate dioptase, Cu6[Si6O18] · 6 H2O.  相似文献   

15.
利用水热法合成了五硼酸三乙胺[HN(C2H5)3][B5O6(OH)4], 并利用单晶X射线衍射技术解析了其结构, 同时利用傅立叶红外分析、元素分析及热分析技术加以佐证. 该化合物属于单斜晶系, 其空间群为P21/c, 相应的晶胞参数为a=1.0036(2) nm, b=1.1353(2) nm, c=1.4843(3) nm和β=106.54(3)°. 它由孤立的五硼酸阴离子[B5O6(OH)4]-和三乙胺阳离子[HN(C2H5)3]+构成. 五硼酸阴离子[B5O6(OH)4]-通过氢键构成三维网状结构, [HN(C2H5)3]+位于其中的孔道中.  相似文献   

16.
[Co(phen)3]2[PMo12O40](OH)的水热合成及晶体结构   总被引:1,自引:0,他引:1  
利用水热合成法制备了Keggin结构阴离子有机一无机复合物[Co(phen)3]2[PMo12O40](OH),通过元素分析,红外光谱和X射线单晶衍射等对其进行了表征.结果表明,该化合物属于单斜晶系,C2/c空间群.=1.97225(18)nm,b=1.81079(16)nm,c=2.5117(2)nm,β=100.5380(10)°,V=8.819O(14)nm^3,Z=4,R1=0.0587,wR2=0.1211.该化合物分子由一个多阴离子[PMo12O40]^3-,两个[Co(phen)3]^2+及一个羟基组成.  相似文献   

17.
在水热条件下(120 ℃), 将醋酸锰、4,4'-联吡啶(4,4'-bpy)与9-蒽酸(9-HAC)反应, 得到了配位聚合物[Mn(9-AC)2(4,4'-bpy)(H2O)2]n, 通过元素分析、红外光谱、X射线单晶衍射对其进行了表征, 并用TGA研究了该配位聚合物的热稳定性. 结构解析结果表明, 该晶体属于正交晶系, Fdd2空间群, a=1.66772(12) nm, b=3.36471(16) nm, c=1.1687(4) nm, V=6.558(2) nm3, Z=8, Mr=689.60, Dc=1.397 Mg/m3, R=0.0356, wR2 = 0.0604. 在该配位聚合物中, 中心锰原子采取略微变形的八面体构型, 与两种配体共同构筑了一维直线形链结构, 链与链之间通过氢键相互作用构筑成三维超分子网络.  相似文献   

18.
(NH4)2[B2P3O11(OH)] was synthesized as a crystalline colorless powder by reaction of (NH4)2HPO4, H3BO3, and H3PO4 under hydrothermal conditions at 180 °C. According to X‐ray single‐crystal investigations (NH4)2[B2P3O11(OH)] crystallizes in a new structure type in the orthorhombic space group P212121 (no. 19) [Z = 4, a = 4.509(3), b = 14.490(11), c = 16.401(12) Å, R1 = 0.046, wR2 = 0.093, 1682 data, 200 parameters]. The crystal structure comprises infinite layers of corner‐sharing borate, phosphate and hydroxo‐phosphate tetrahedra with ammonium ions in‐between. The loop‐Branched (lB) zweier‐single layer reveals an open‐Branched (oB) vierer‐single ring as fundamental building unit (FBU), which was observed in (NH4)2MnII[B2P3O11(OH)2]Cl[1] for the first time. Besides the spectroscopic properties the thermal behavior is presented as well.  相似文献   

19.
合成了铜锶异金属配位聚合物,并通过元素分析和IR光谱对其进行了表征,利用X射线单晶衍射测定了其晶体结构.该化合物为具有{[(CuL)2Sr(H2O).Sr2(H2O)7].2H2O.0.5CH3OH}n化学组成的二维层状配位聚合物[H4L=N-(3-羧基水杨醛)-N′-(2-羟基苯甲酰基)乙撑二胺],其结构单元由两个相邻的片段组成,这些结构单元彼此相互配位,从而形成了一种结构新颖的层状配位聚合物.  相似文献   

20.
新型化合物[Ni(en)2V6O14]n的水热合成与晶体结构   总被引:1,自引:0,他引:1  
金属 -氧簇合物在催化吸附、医药临床、能量存储和材料科学等方面的应用越来越受到关注 [1~ 3 ] .钒 -氧簇合物的结构新颖 ,在材料领域中具有广泛的应用前景 .采用水热合成技术 ,以简单的无机、有机起始原料在相对低温下制备金属 -氧簇合物晶体是近年来刚刚兴起的研究工作 [4 ] ,并且已经合成出一维链状化合物 Cu(prn) 2 V2 O6[5]、层状结构 Ni(C10 H8N2 ) 2 V3 O8.5[6]及三维网状结构 (H2 en Me)[Ni(en) 2 V12 O2 8][7] .我们采用水热技术合成了由 { V V 2 O7} n 单元层与桥配体 [Ni(en) 2 ]2 +构建的三维无机 -有机化合物 [Ni(en…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号