首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
LiLa2F3(SO4)2 and LiEr2F3(SO4)2: Fluoride‐Sulfates of the Rare‐Earth Elements with Lithium The reaction of LiF with the anhydrous sulfates M2(SO4)3 (M = La, Er) in sealed gold ampoules yields single crystals of the pseudo quaternary compounds LiLa2F3(SO4)2 and LiEr2F3(SO4)2. According to X‐ray single crystal investigations, LiLa2F3(SO4)2 crystallizes with the monoclinic (I2/a, Z = 4, a = 828.3(2), b = 694.7(1), c = 1420.9(3) pm, β = 95.30(2)°, Rall = 0.0214) and LiEr2F3(SO4)2 with the orthorhombic crystal system (Pbcn, a = 1479.1(2), b = 633.6(1), c = 813.7(1) pm, Rall = 0.0229). A common feature of both structures is a dimeric unit of metal atoms connected via three fluoride ions. This leads to relatively short metal‐metal distances (La3+–La3+: 389 pm, Er3+–Er3+: 355 pm). In LiLa2F3(SO4)2, Li+ is surrounded by four oxygen atoms of four sulfate groups and one fluoride ion in form of a trigonal bipyramid, in LiEr2F3(SO4)2 two further fluoride ligands are attached.  相似文献   

3.
4.
Low‐Temperature Oxidation in Liquid Ammonia: [Eu2(Ind)4(NH3)6], the First Indolate of a Rare Earth Element Intensively yellow to orange coloured, transparent crystals of [Eu2(Ind)4(NH3)6] were obtained by low‐temperature oxidation of europium metal with indole (C8H6NH) in liquid ammonia at —50 °C and subsequent melting of the reaction mixture in excess indole at 120 °C. [Eu2(Ind)4(NH3)6] has a dimeric structure and contains divalent Eu. The coordination sphere around the europium atoms consists of five N atoms of two cisoid indolate anions and three NH3 molecules as well as an η5‐coordinating π‐system of another indolate ligand, bridging to the next Eu atom with an sp2‐orbital.  相似文献   

5.
Synthesis and Crystal Strucure of NaPr2F3(SO4)2 Light green single crystals of NaPr2F3(SO4)2 have been obtained by the reaction of Pr2(SO4)3 and NaF in sealed gold ampoules at 1050 °C. In the crystal structure (monoclinic, I2/a, Z = 4, a = 822.3(1), b = 692.12(7), c = 1419.9(2) pm, β = 95.88(2)°) Pr3+ is coordinated by four F ions and six oxygen atoms which belong to five SO4 ions. Thus, one of the latter acts as a bidentate ligand. The [PrO6F4] units are connected via three common fluoride ions to pairs with a Pr–Pr distance of 386 pm. Na+ is sevenfold coordinated by three fluorine and four oxygen atoms.  相似文献   

6.
Synthesis of Y2O2(CN2) and Luminescence Properties of Y2O2(CN2):Eu Crystalline powders of the new compound Y2O2(CN2) were prepared by solid state reactions from different mixtures of YCl3/YOCl/Y2O3 and Li2(CN2) at temperatures between 620 °C and 650 °C. Structure refinements based on X‐ray powder diffraction revealed that trigonal Y2O2(CN2) crystallizes with a structure that is closely related to that of Y2O2S, whereas linear N‐C‐N units replace sulphur atoms in Y2O2S. In addition, a hexagonal polytype of Y2O2(CN2) was obtained in which a different stacking sequence of yttrium atoms creates a doubling of the c‐axis. Europium‐doped samples of Y2O2(CN2) were prepared and the luminescence properties of Y2O2(CN2):Eu are presented.  相似文献   

7.
8.
Pr30Ti24I8O25Se58: A Highly Symmetric Structure with Isolated [Ti6(O)Se8]‐Cluster Units Black crystals of Pr30Ti24I8O25Se58 have been prepared by the reaction of Pr2Se3, Pr2O2Se, TiSe2–x, and I2 at 900 °C. Its crystal structure can be described as a variation of the NaCl structure type (space group Fm 3 m, a = 2319.91(15) pm, Z = 4). The compound contains the first example of a [Ti6(O)Se8] cluster. These clusters form a cubic close packing, where the octahedral and tetrahedral holes are occupied by “superoctahedral” and “supertetrahedral” building units, respectively.  相似文献   

9.
Geometrical and topological analysis of zeolite crystal structures having a tetrahedral framework of the cancrinite (CAN) type, namely, (CAN) Na8(Al6Ge6O24)Ge(OH)6(H2O)2 (acentric space group P63, hP64, Na-CAN) and Cs2Na6(Al6Ge6O24)Ge(OH)6 (P63, hP52, CsNa-CAN), is carried out with the use of computer techniques (the TOPOS 4.0 program package). An AT 6 hexapolyhedral precursor nanocluster centered with a template cation A (Na, Cs) is identified. The topological type of a two-dimensional (2D) crystalforming T-net 4.6.12, which corresponds to a uninodal semiregular Shubnikov net, is recognized. The full 3D reconstruction of crystal structure self-assembly is performed as follows: precursor nanocluster → primary chain → microlayer → microframework → … framework. The symmetry of an AT6 precursor nanocluster is described by point group 3; the symmetry axis passes through the center of the nanocluster and cation A. The coordination number (CN) of a precursor nanocluster, which characterizes the nanocluster stacking in the macrostructure, is six. In both structures, six Na atoms and a Ge(OH)6 polyhedral species are spacers filling the voids between AT 6 precursor nanoclusters. The Ge(OH)6 polyhedral species is characterized by four and two orientationally allowed positions in Na-CAN and CsNa-CAN, respectively. The minimal number of suprapolyhedral AT 6 precursor nanoclusters required for the 3D microframework to form is 16; that is, 96 tetrahedra are involved in microframework self-assembly.  相似文献   

10.
Li2EuSiO4, an Europium(II) Litho-Silicate: Eu[(Li2Si)O4] Single crystals of Li2EuSiO4 were first obtained by reaction of Eu2SiO4 with a melt of LiCl at 800 °C in a sealed tantalum tube. It crystallizes with the trigonal space group P3121, Z = 3, with a = 502.70(5), c = 1247.0(2) pm. The tetrahedra [LiO4] and [SiO4] are connected via common corners and thereby build up a three-dimensional network that leaves space for Eu2+ which is in an eightfold coordination. Li2SrSiO4 is isotypic with a = 502.59(4) and c = 1247.1(1) pm.  相似文献   

11.
12.
The Chloride Nitrate PrCl2(NO3) · 5 H2O with Cationic and Anionic Complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4] Green single crystals of PrCl2(NO3) · 5 H2O have been obtained from an aqueous solution of PrCl3 and Pr(NO3)3. The crystal structure [monoclinic, P2/c, Z = 4, a = 1228.8(3), b = 648.4(1), c = 1266.0(4) pm, β = 91.91(3)°] contains cationic and anionic Pr3+ complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4]. Both nitrate groups of the anionic complex act as bidentate chelating ligands. Hydrogen bonds are observed with water molecules as donors and chlorine as well as oxygen atoms as acceptors.  相似文献   

13.
14.
Single crystals of Eu(ClO4)3 have been obtained by slow dehydration of a hydrous product prepared by the reaction of Eu2O3 with HClO4. The crystal structure (hexagonal, P63/m, Z = 2, a = 924.96(9), c = 574.86(8) pm) consists of tricapped trigonal [EuO9] prisms and [ClO4] tetrahedra. One of the oxygen atoms in the ClO4 group does not coordinate to Eu3+ and points towards the empty channel which runs in the direction [001].  相似文献   

15.
A quaternary binuclear europium complex [Eu2(phth)2(Hphth)2(phen)2(H2O)4] (H2phth?=?phthalic acid, phen?=?1,10-phenanthroline) has been synthesized. The structure was determined by X-ray crystallography which reveals that it is binuclear with each europium nine-coordinate. Intermolecular hydrogen bonds link the complex units to form a 3D supermolecular network. Its properties have been studied by means of luminescence spectrum and thermal analysis. Fluorescence spectra show that the complex exhibits strong red emission.  相似文献   

16.
The 1D chain red luminescent europium coordination polymer: {[Eu2L6(DMF)(H2O)] · 2DMF · H2O}n ( I ) (L = 4‐chloro‐cinnamic acid anion, C9H6ClO2, DMF = N, N‐dimethylformamide) was synthesized by the reaction of Eu(OH)3 and 4‐chloro‐cinnamic acid ligand. The structure of the coordination polymer was determined by single‐crystal X‐ray diffraction analysis. It reveals that there exists two crystallographically nonequivalent europium atoms in each unit of this coordination polymer and Eu3+ ions are connected by two alternating bridging modes to form an endless polymer structure. The luminescent properties and energy transfer process in the complex are investigated at room temperature.  相似文献   

17.
18.
Transparent orange crystals of [Yb(MeCp)2(O2CC6F5)]2 and [Yb(MeCp)2(O2C‐o‐HC6F4)]2 were obtained by oxidation of Yb(MeCp)2 with M(O2CR) (M = 1/2 Hg, Tl; R = C6F5, o‐HC6F4) in tetrahydrofuran. They have a dimeric structure with bridging bidentate (O, O')‐benzoate groups and eight coordinated ytterbium. Both crystallise isotypic in the orthorhombic space group Pbca. Room temperature as well as low temperature single crystal X‐ray investigations show the o‐H/F positions in [Yb(MeCp)2(O2C‐o‐HC6F4)]2 not to be ordered.  相似文献   

19.
Colourless triclinic single crystals of Na4(NH4)2[TeMo6O24] · 16H2O were grown in aqueous solution (space group P1 , a = 1 075.3(1), b = 1 074.2(1), c = 1 089.8(1) pm, = 96.259(9), β = 118.556(7), γ = 113.355(8)°, Z = 1, 295 K, 311 parameters, 3 689 reflections, Rg = 0.0197). There are two crystallographically independent Na+ cations. Na(1) is coordinated octahedrally by four water molecules and two oxygen atoms of the centrosymmetric [TeMo6O24]6? anion. Na(2) is bound to five water molecules in a considerably distorted trigonally bipyramidal fashion. These bipyramids are linked with NH4+ by hydrogen bonds to yield centrosymmetric cluster cations consisting of two NH4+ and two Na(H2O)5+ each. Hydrogen bonds envolving all except one (O(10)) of the oxygen atoms of the [TeMo6O24]6? anion as almost equivalent proton acceptors regardless of their bonding mode to Te and Mo, respectively, establish further connections to NH4+ and the water of crystallization.  相似文献   

20.
Single crystals of [Eu(C4H4O6)(H2O)2](H2O)2 were obtained from the combination of solutions of EuCl2, previously obtained by electrolysis of an aqueous solution of EuCl3, and tartraric acid, neutralized by LiOH. The crystal structure (orthorhombic, P212121, Z = 4, a = 948.9(1), b = 954.6(1), c = 1098.4(1) pm; R(F) = 0.0242 and Rw(F2) = 0.0585 for I > 2σ(I); R(F) = 0.0256 and Rw(F2) = 0.0592 for all data) is isotypic with [Ca(C4H4O6)(H2O)2](H2O)2 and [Sr(C4H4O6)(H2O)2](H2O)2 exhibiting a three‐dimensional structure. The divalent cations (Eu2+, Ca2+, Sr2+) are eight‐coordinate by oxygen atoms that originate from carboxylate and hydroxyl groups of the tartraric dianion and two of the four water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号