首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method.  相似文献   

2.
We present in this paper a comprehensive account of an explicitly spin-free coupled cluster theory for treating energy differences of open-shell states relative to a closed-shell ground state, where the open-shell states of interest are dominated by a few simple configuration state functions. We develop a valence-universal coupled cluster formalism to achieve this via a novel cluster expansion ansatz for the valence part of the wave operator, where the orbital relaxation and the correlation relaxation accompanying ionization/excitation from the ground state are taken care of to all orders in compact, efficient, and explicitly spin-free manner. The essential difference of our proposed ansatz from the ordinary and the normal-ordered cluster ansatz in vogue is that (a) we allow the valence cluster operators to be connected among themselves with spectator valence lines only and (b) we use suitable combinatoric factors accompanying powers of cluster operators thus connected, which are equal to the number of ways the operators can be joined, leading to the same excitation (the automorphic factor). We emphasize that such an ansatz does not generate terms (diagrams) with chains of cluster operators joined among themselves via spectator lines only. Barring only a few, almost all the terms in the working equations determining the cluster amplitudes involve contraction of the Hamiltonian with the cluster operators via at least one nonspectator line, leading to what we call a "strongly connected" series. The structure of the working equation is remarkably similar to the single-reference closed-shell equation, with a few additional terms. The presence of contractions among cluster operators via spectator lines introduces the additional physical effects of orbital and correlation relaxation using low-body cluster operators. As an illustrative application of the new multireference coupled cluster (CC) theory, we consider in this paper computation of ionization potentials (IPs) of one-valence problem with only one active orbital. The numerical applications are made for both the core- and the inner- and outer-valence IPs for several molecular systems. The numerical values demonstrate the superiority of the relaxation-inducing CC theory, as compared to the normal-ordered ansatz.  相似文献   

3.
A new formalism for calculating and analyzing many-mode quantum dynamics is presented. The formalism is similar in spirit to the second quantization formulation of electronic structure theory. The similarity means that similar techniques can be employed for calculating the many-mode nuclear wave function. As a consequence a new formulation of the vibrational self-consistent-field (VSCF) method can be developed. Another result is that the formalism opens up for the construction of new methods that go beyond the VSCF level. A vibrational coupled cluster (VCC) theory is constructed using the new formalism. The size-extensivity concept is introduced in the context of multimode wave functions and the size extensivity of approximate VCC methods is illustrated in comparison with the non-size-extensive vibrational configuration interaction method.  相似文献   

4.
For the first time high-order excitations (n>2) have been studied in three multireference couple cluster (MRCC) theories built on the wave operator formalism: (1) the state-universal (SU) method of Jeziorski and Monkhorst (JM) (2) the state-specific Brillouin-Wigner (BW) coupled cluster method, and (3) the state-specific MRCC approach of Mukherjee (Mk). For the H4, P4, BeH(2), and H8 models, multireference coupled cluster wave functions, with complete excitations ranging from doubles to hextuples, have been computed with a new arbitrary-order string-based code. Comparison is then made to corresponding single-reference coupled cluster and full configuration interaction (FCI) results. For the ground states the BW and Mk methods are found, in general, to provide more accurate results than the SU approach at all levels of truncation of the cluster operator. The inclusion of connected triple excitations reduces the nonparallelism error in singles and doubles MRCC energies by a factor of 2-10. In the BeH(2) and H8 models, the inclusion of all quadruple excitations yields absolute energies within 1 kcal mol(-1) of the FCI limit. While the MRCC methods are very effective in multireference regions of the potential energy surfaces, they are outperformed by single-reference CC when one electronic configuration dominates.  相似文献   

5.
The singular value decomposition of the n-particle excitation operator as determined by coupled cluster or perturbation theory is used to extract the dominant and interesting electron-electron correlations from complex molecular wave functions. As an example of the very general formalism, the decomposition of the T(2) operator obtained from coupled cluster doubles calculations is used to analyze the strength and character of pair correlations in a variety of molecules with interesting electronic structure. The magnitude of the largest singular value(s) determines the strength of the correlation(s), and the corresponding right- and left-hand singular vectors characterize the physical and spatial nature of the correlations. The primary advantage of this tool over natural orbital analysis is that it provides direct associations between the occupied and virtual geminals involved in the correlations.  相似文献   

6.
Any multi-reference coupled cluster (MRCC) development based on the Jeziorski-Monkhorst (JM) multi-exponential ansatz for the wave-operator Ω suffers from spin-contamination problem for non-singlet states. We have very recently proposed a spin-free unitary group adapted (UGA) analogue of the JM ansatz, where the cluster operators are defined in terms of spin-free unitary generators and a normal ordered, rather than ordinary, exponential parametrization of Ω is used. A consequence of the latter choice is the emergence of the "direct?term" of the MRCC equations that terminates at exactly the quartic power of the cluster amplitudes. Our UGA-MRCC ansatz has been utilized to generate both the spin-free state specific (SS) and the state universal MRCC formalisms. It is well-known that the SSMRCC theory requires suitable sufficiency conditions to resolve the redundancy of the cluster amplitudes. In this paper, we propose an alternative variant of the UGA-SSMRCC theory, where the sufficiency conditions are used for all cluster operators containing active orbitals and the single excitations with inactive orbitals, while the inactive double excitations are assumed to be independent of the model functions they act upon. The working equations for the inactive double excitations are thus derived in an internally contracted (IC) manner in the sense that the matrix elements entering the MRCC equations involve excitations from an entire combination of the model functions. We call this theory as UGA-ICID-MRCC, where ICID is the acronym for "Internally Contracted treatment of Inactive Double excitations." Since the number of such excitations are the most numerous, choosing them to be independent of the model functions will lead to very significant reduction in the number of cluster amplitudes for large active spaces, and is worth exploring. Moreover, unlike for the excitations involving active orbitals, where there is inadequate coupling between the model and the virtual functions in the SSMRCC equations generated from sufficiency conditions, our internally contracted treatment of inactive double excitations involves much more complete couplings. Numerical implementation of our formalism amply demonstrates the efficacy of the formalism.  相似文献   

7.
We develop a correction for the coupled cluster version of the perfect pairing (PP) model. The correction is based on finding modified values of the PP amplitudes such that the second coupled cluster central moment defined in the space of all valence single and double substitutions vanishes and, subject to this constraint, minimizing the deviation between the modified and unmodified PP amplitudes with respect to a chosen metric. We discuss how this correction can be generalized to other constrained doubles models, such as local correlation and active-space models. While the correction is not strictly size consistent and retains some of the deficiencies of the PP model, numerical results indicate that much of the missing active-space coupled cluster singles and doubles correlation energy is recovered.  相似文献   

8.
The coupled cluster method is applied to a strongly correlated lattice Hamiltonian, and the coupled cluster linear response method is extended to the calculation of electronic spectra by finding an approximation to a resolvent operator which describes the spectral response of the coupled cluster solution to excitation operators. In this spectral coupled cluster method, the ground and excited states appear as resonances in the spectra, and the resolvent can be iteratively improved in selected spectral regions. The method is applied to a MnO2 plane model which corresponds to previous experimental works.  相似文献   

9.
Vertical excitation energies as well as related absolute photoabsorption oscillator strength data are very scarce in the literature for methane. In this study, we have characterized the three existing series of low-lying Rydberg states of CH4 by computing coupled cluster linear response (CCLR) vertical excitation energies together with oscillator strengths in the molecular-adapted quantum defect orbital formalism from a distorted Cs geometry selected on the basis of outer valence green function calculations. The present work provides a wide range of data of excitation energies and absolute oscillator strengths which correspond to the Rydberg series converging to the three lower ionization potential values of the distorted methane molecule, in energy regions for which experimentally measured data appear to be unavailable.  相似文献   

10.
A new ab initio method for calculating transition strengths and orbital-unrelaxed first-order properties of singlet ground and excited states of extended molecular systems is presented. It is based on coupled cluster response theory at the level of the CC2 model with local approximations introduced to the doubles-excitation part of the wave function. Density fitting is employed for the calculation of the electron repulsion integrals, so that--with the exception of doubles amplitudes--only three-indexed objects do occur in the formalism. The new method was tested by performing calculations for a set of various molecules and excited states and by comparing the results with corresponding canonical (nonlocal) calculations. It turned out that for calculating transition strengths and properties of excited states the ordinary Boughton-Pulay domains are insufficient in numerous cases. To circumvent this problem a new scheme for extending domains is proposed, which is based on the solution of the coupled perturbed localization and Hartree-Fock equations. When such extended domains are used, a satisfactory agreement between canonical and local results is achieved.  相似文献   

11.
The formalism of response theory is applied to derive expressions for static and dynamic polarizabilities within the state-specific multireference coupled-cluster theory suggested by Mukherjee and co-workers (Mk-MRCC) [J. Chem. Phys. 110, 6171 (1998)]. We show that the redundancy problem inherent to Mk-MRCC theory gives rise to spurious poles in the Mk-MRCC response functions, which hampers the reliable calculation of dynamic polarizabilities. Furthermore, we demonstrate that in the case of a symmetry-breaking perturbation a working response theory is obtained only if certain internal excitations are included in the responses of the cluster amplitudes. Exemplary calculations within the singles and doubles approximation (Mk-MRCCSD) are carried out on aryne compounds to illustrate the impact of a multireference ansatz on the polarizability.  相似文献   

12.
We have calculated vertical excitation energies and oscillator strengths of the low lying electronic transitions in H2O, NH3, and H2ONH3 using a hierarchy of coupled cluster response functions [coupled cluster singles (CCS), second order approximate coupled cluster singles and doubles (CC2), coupled cluster singles and doubles (CCSD), and third order approximate coupled cluster singles, doubles, and triples (CC3)] and correlation consistent basis functions (n-aug-cc-pVXZ, where n=s,d,t and X=D,T,Q). Our calculations indicate that significant changes in the absorption spectra of the photodissociative states of H2O and NH3 monomers occur upon complexation. In particular, we find that the electronic transitions originating from NH3 are blueshifted, whereas the electronic transitions originating from H2O are redshifted.  相似文献   

13.
The general formalism of the block-correlated coupled cluster (BCCC) method, an alternative multireference coupled cluster method for calculating the ground-state electronic structures of molecular systems, has been presented. The BCCC theory is constructed in terms of a complete set of many-electron states of individual blocks, assumed that the whole system could be partitioned into a set of blocks. The reference state in the BCCC is selected as a tensor product of the most important many-electron state of each system block. By truncating the cluster operator to a certain n-block correlation level, an approximate but size-extensive BCCC method, denoted as BCCCn, is defined. For reducing the computational effort but without much loss of accuracy, the reduced density matrix is introduced to generate an optimal subset of many-electron states for each block. I have implemented the BCCCn (n=2,3) methods within the S=1/2 Heisenberg Hamiltonian, and applied them to calculate the ground-state energies of one-dimensional spin chains and quasi-one-dimensional two-leg spin ladders. The calculated results show that with the appropriate partition of the studied systems the BCCC3 method can yield quite satisfactory ground-state energies for these spin systems.  相似文献   

14.
We present here a perturbative analysis of the coupled cluster response method for molecular static properties with Euler and extended coupled cluster functionals under cubic truncation. Comparative analysis is meant to cater to both pedagogical and practical interests. Comprehensive tables for energy-derivative expressions and equations at the stationary point are presented. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
As a practical tool of being applicable to bigger molecules, a full-blown state-specific multi-reference coupled cluster formalism developed by us (Mahapatra et al. in J Chem Phys 110:6171, 1999) would be rather demanding computationally, and it is worthwhile to look for physically motivated approximation schemes which capture a substantial portion of the correlation of the full-blown theory. In this spirit, we have recently proposed coupled electron-pair approximation (CEPA)-like various approximants to the parent spin-adapted state-specific multi-reference coupled cluster (SS-MRCC) theory which depend on the inclusion of EPV terms to various degree. Here, the space of excitations is confined to the first order interactive virtual space generated by the cluster operator, but the EPV terms are included exactly. We call them spin-free state specific multi-reference CERA (SS-MRCEPA) theories. They work within the complete active space (CAS) and have been found to be very effective in bypassing the intruders, similar in performance to that of the parent SS-MRCC theory. The spin-adaptation of the working equations of both the SS-MRCC and the CEPA-like approximants is a non-trivial exercise. In this paper, we delineate briefly the essentials of a spin-free formulation of the SS-MRCC and SS-MRCEPA theories. This allows us to include open-shell configuration state functions (CSF) in the CAS. We consider three variants of SS-MRCEPA method. Two are explicitly orbital invariant: (1) SS-MRCEPA(0), a purely lineralized version of the SS-MRCC theory, (2) SS-MRCEPA(I), which includes all the EPV terms explicitly and exactly in an orbital invariant manner and (3) the SS-MRCEPA(D), which emerges when we keep only the diagonal terms of a set of dressed operators in the working equations. Unlike the first two, the third version is not invariant under the orbital transformation within the set of doubly occupied core, valence and virtual orbitals. The SS-MRCEPA methods produce very encouraging results as was evidenced in the applications on the computation of potential energy surfaces for the ground states of LiH and HF molecules.  相似文献   

16.
We present density functional theory and calculations for excited state second order, static or dynamic, properties. The excited state properties are identified from a double residue of a cubic response function. The performance of various functionals, including the generalized gradient approximation and fractional exact Hartree-Fock exchange, is compared to coupled cluster calculations. Applications on excited state polarizabilities of s-tetrazine and pyrimidine show a good agreement with ab initio correlated, coupled cluster, results.  相似文献   

17.
We have demonstrated an application of a stationary coupled cluster response approach for molecular properties using an Euler functional. This involves terms which are of cubic power in cluster amplitudes. We have shown that these are important terms and have also discussed the convergence properties of the functional for higher order properties.  相似文献   

18.
A new formulation of the second-order exchange-induction energy of symmetry-adapted perturbation theory is presented. In the proposed formalism the exchange-induction energy is expressed through one- and two-particle reduced density matrices of monomers, which are of zeroth and first order with respect to the effective electrostatic potential of another monomer. The resulting expression is further modified by using the partition of two-particle density matrices into the antisymmetrized product of one-particle density matrices and the remaining cumulant part. The proposed formalism has been applied to the case of closed-shell monomers and for density matrices obtained from the expectation-value expression with coupled cluster singles and doubles wave functions. The performance of the new approach has been demonstrated on several benchmark van der Waals systems, including dimers of argon, water, and ethyne.  相似文献   

19.
We present a detailed study of the effects of electron correlation on two-photon absorption calculated by coupled cluster quadratic response theory. The hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3 has been used to investigate the effects of electron correlation on the two-photon absorption cross sections of formaldehyde (CH2O), diacetylene (C4H2), and water (H2O). In particular, the effects of triple excitations on two-photon transition cross sections are determined for the first time. In addition, we present a detailed comparison of the coupled cluster results with those obtained from Hartree-Fock and density-functional response theories. We have investigated the local-density approximation, the pure Becke-Lee-Yang-Parr (BLYP) functional, the hybrid Becke-3-parameter-Lee-Yang-Parr (B3LYP), and the Coulomb-attenuated B3LYP (CAM-B3LYP) functionals. Our results show that the CAM-B3LYP functional, when used in conjuction with a one-particle basis-set containing diffuse functions, has much promise; however, care must still be exercised for diffuse Rydberg-type states.  相似文献   

20.
A derivation of the linear response function for the Brueckner coupled cluster method is presented that enables the calculation of second-order molecular properties such as frequency-dependent polarizabilities. By using the Brueckner orbital variant of coupled cluster theory, the spurious pole structure inherent in the standard coupled cluster approach with orbital relaxation is avoided. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号