首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A graph is perfect if the chromatic number is equal to the clique number for every induced subgraph of the graph. Perfect graphs were defined by Berge in the sixties. In this survey we present known results about partial characterizations by forbidden induced subgraphs of different graph classes related to perfect graphs. We analyze a variation of perfect graphs, clique-perfect graphs, and two subclasses of perfect graphs, coordinated graphs and balanced graphs.  相似文献   

2.
On the Zagreb indices of the line graphs of the subdivision graphs   总被引:1,自引:0,他引:1  
The aim of this paper is to investigate the Zagreb indices of the line graphs of the tadpole graphs, wheel graphs and ladder graphs using the subdivision concepts.  相似文献   

3.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.  相似文献   

4.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

5.
A graph is called normal if its vertex set can be covered by cliques Q1,Q2,…,Qk and also by stable sets S1,S2,…,Sl, such that SiQj≠∅ for every i,j. This notion is due to Körner, who introduced the class of normal graphs as an extension of the class of perfect graphs. Normality has also relevance in information theory. Here we prove, that the line graphs of cubic graphs are normal.  相似文献   

6.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. Another open question concerning clique-perfect graphs is the complexity of the recognition problem. Recently we were able to characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. These characterizations lead to polynomial time recognition of clique-perfect graphs in these classes of graphs. In this paper we solve the characterization problem in two new classes of graphs: diamond-free and Helly circular-arc () graphs. This last characterization leads to a polynomial time recognition algorithm for clique-perfect graphs.  相似文献   

7.
A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. A graph G is called conservative if it admits an orientation and a labelling of the edges by integers {1,…,|E(G)|} such that at each vertex the sum of the labels on the incoming edges is equal to the sum of the labels on the outgoing edges. In this paper we deal with conservative graphs and their connection with the supermagic graphs. We introduce a new method to construct supermagic graphs using conservative graphs. Inter alia we show that the union of some circulant graphs and regular complete multipartite graphs are supermagic.  相似文献   

8.
The subject of this paper are infinite, locally finite, vertex-transitive median graphs. It is shown that the finiteness of the Θ-classes of such graphs does not guarantee finite blocks. Blocks become finite if, in addition, no finite sequence of Θ-contractions produces new cut-vertices. It is proved that there are only finitely many vertex-transitive median graphs of given finite degree with finite blocks. An infinite family of vertex-transitive median graphs with finite intransitive blocks is also constructed and the list of vertex-transitive median graphs of degree four is presented. Sandi Klavžar: Supported by the Ministry of Science of Slovenia under the grant P1-0297. The author is also with the Faculty of Mathematics and Natural Sciences, University of Maribor, Slovenia and the Institute of Mathematics, Physics and Mechanics, Ljubljana.  相似文献   

9.
A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected bipartite biclaw-free graph with δ(G)?5, then G is collapsible, and of course supereulerian. This bound is best possible.  相似文献   

10.
设v1,v2,v3,…,vn是图G的n个顶点,(d(v1),d(u2),d(u3),…,d(vn))^T是图G邻接矩阵A的特征向量,则称G是调和图,其中d(vi)表示顶点弘的度.1—4圈的调和图已经确定,本文确定了所有的3-调和的5-圈调和图.  相似文献   

11.
12.
13.
It is shown that almost all graphs are unretractive, i.e. have no endomorphisms other than their automorphisms. A more general result has already been published in [V. Koubek, V. Rödl, On the minimum order of graphs with given semigroup, J. Combin. Theory Ser. B 36 (1984) 135–155]. In the paper at hand, a different proof is presented, following an approach of P. Erdős and A. Rényi that was used in their proof [P. Erdős, A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14 (1963) 295–315] that almost all graphs are asymmetric (have a trivial automorphism group). The approach is modified using an algebraically motivated reduction to idempotent endomorphisms. These take the role of the automorphisms in the proof of Erdős and Rényi. A bound of is provided for the ratio of retractive graphs among all graphs with n vertices, confirming an earlier statement by Babai [L. Babai, Automorphism groups, isomorphism, reconstruction, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), in: Handbook of Combinatorics, vol. 2, Elsevier, Amsterdam, 1995, pp. 1447–1540]. The fact that almost all graphs are unretractive and asymmetric can be summarized in the statement that almost all graphs are rigid (have a trivial endomorphism monoid), and the same bound can be obtained for corresponding ratios of nonrigid graphs.  相似文献   

14.
We prove that the set of vertex-transitive graphs of finite degree is uncountably large.  相似文献   

15.
We present a new family of models that is based on graphs that may have undirected, directed and bidirected edges. We name these new models marginal AMP (MAMP) chain graphs because each of them is Markov equivalent to some AMP chain graph under marginalization of some of its nodes. However, MAMP chain graphs do not only subsume AMP chain graphs but also multivariate regression chain graphs. We describe global and pairwise Markov properties for MAMP chain graphs and prove their equivalence for compositional graphoids. We also characterize when two MAMP chain graphs are Markov equivalent.For Gaussian probability distributions, we also show that every MAMP chain graph is Markov equivalent to some directed and acyclic graph with deterministic nodes under marginalization and conditioning on some of its nodes. This is important because it implies that the independence model represented by a MAMP chain graph can be accounted for by some data generating process that is partially observed and has selection bias. Finally, we modify MAMP chain graphs so that they are closed under marginalization for Gaussian probability distributions. This is a desirable feature because it guarantees parsimonious models under marginalization.  相似文献   

16.
2p2阶3度Cayley图   总被引:2,自引:0,他引:2  
Cayley图Cay(G,S)称之为正规的,如果G的右正则表示是Cay(G,S)全自同构群的正规子群。本文决定了2p~2(p为素数)阶群上3度连通Cayley图的正规性,作为该结果的一个应用,对每一个1(?)s(?)5,对2p~2阶3度s-正则Cayley图作了分类。  相似文献   

17.
A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we consider an extension of regular supermagic graphs and apply it to some constructions of supermagic graphs. Using the extension we prove that for any graph G there is a supermagic regular graph which contains an induced subgraph isomorphic to G.  相似文献   

18.
Terry A. McKee   《Discrete Mathematics》2003,260(1-3):231-238
Robert E. Jamison characterized chordal graphs by the edge set of every k-cycle being the symmetric difference of k−2 triangles. Strongly chordal (and chordal bipartite) graphs can be similarly characterized in terms of the distribution of triangles (respectively, quadrilaterals). These results motivate a definition of ‘strongly chordal bipartite graphs’, forming a class intermediate between bipartite interval graphs and chordal bipartite graphs.  相似文献   

19.
There are several density functions for graphs which have found use in various applications. In this paper, we examine two of them, the first being given by b(G)=|E(G)|/|V(G)|, and the other being given by g(G)=|E(G)|/(|V(G)|−ω(G)), where ω(G) denotes the number of components of G. Graphs for which b(H)≤b(G) for all subgraphs H of G are called balanced graphs, and graphs for which g(H)≤g(G) for all subgraphs H of G are called 1-balanced graphs (also sometimes called strongly balanced or uniformly dense in the literature). Although the functions b and g are very similar, they distinguish classes of graphs sufficiently differently that b(G) is useful in studying random graphs, g(G) has been useful in designing networks with reduced vulnerability to attack and in studying the World Wide Web, and a similar function is useful in the study of rigidity. First we give a new characterization of balanced graphs. Then we introduce a graph construction which generalizes the Cartesian product of graphs to produce what we call a generalized Cartesian product. We show that generalized Cartesian product derived from a tree and 1-balanced graphs are 1-balanced, and we use this to prove that the generalized Cartesian products derived from 1-balanced graphs are 1-balanced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号