首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 5,7‐diphenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) with α,β‐unsaturated carbonyl compounds 2a‐f led to the formation of the alkylated heterocycles 3a‐f (Figure 1). However, the reaction of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 5 ) with 2a‐c yielded under the same conditions the triazolo[5,1‐b]quinazolines 6a‐c (Figure 3). In this case, the alkylation is followed by a cyclocondensation. The structure elucidation of the products is based on ir, ms, 1H and 13C nmr measurements and on an X‐ray diffraction study.  相似文献   

2.
Rhodium fluoroapatite (RhFAP) is an efficient catalyst for conjugate addition of organoboron reagents to α,β‐unsaturated carbonyl compounds. A variety of arylboronic acids and α,β‐unsaturated carbonyl compounds were converted to the corresponding conjugate‐addition products, demonstrating the versatility of the reaction. The reaction is highly selective. RhFAP was recovered quantitatively by simple filtration, and reused for four cycles.  相似文献   

3.
The macroinitiator of a copolymer (PMDBTM) of methyl methacrylate (MMA) and 2‐(dimethylamino)ethyl methacrylate (DAMA) with 4‐benzyloxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (BTEMPO) pendant groups was prepared by the photochemical reaction of tertiary amine groups of the copolymer with benzophenone in the presence of BTEMPO. The radical copolymerization of MMA and DAMA was carried out first with azo‐bis‐isobutyronitrile (AIBN) as an initiator; then, the dimethylamine groups of the copolymer constituted a charge‐transfer complex with benzophenone under UV irradiation, and the methylene of ternary amine and diphenyl methanol radicals were produced. The former was capped by BTEMPO, and the nitroxide (BTEMPO) was attached to the polymeric backbone. The amount of pendant BTEMPO on PMDBTM was measured by 1H NMR. PMDBTM initiated the graft polymerization of styrene via a controlled radical mechanism, and the molecular weight of the PMD‐g‐polystyrene increased with the polymerization time. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 604–612, 2001  相似文献   

4.
The photochemical reaction between three A5‐steroids (1–3) and a series of substituted 1,4‐benzoquinones and their mechanistic study were reported. The reaction in nitrogen atmosphere led to the formation of three products including the steroid‐quinone coupling compound (A), 7‐hydroxy derivatives of Δ5‐steroids (B) and substituted 1, 4‐hydroquinone (C). Both chemical and spectrometric evidences such as UV‐Visible spectra, ESR, chemically induced dynamic nuclear polarization (CIDNP) and cyclic voltammetry (CV) verified that the title reaction underwent a predominant photoinduced electron transfer pathway via the triplet quinone.  相似文献   

5.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

6.
(E)‐α,β‐Unsaturated pyrazoleamides undergo facile dienolization to furnish copper(I)‐(1Z,3Z)‐dienolates as the major in the presence of a copper(I)‐(R)‐DTBM‐SEGPHOS catalyst and Et3N, which react with aldimines to afford syn‐vinylogous products as the major diastereoisomers in high regio‐ and enantioselectivities. In some cases, the diastereoselectivity is low, possibly due to the low ratio of copper(I)‐(1Z,3Z)‐dienolates to copper(I)‐(1Z,3E)‐dienolates. (Z)‐Allylcopper(I) species is proposed as effective intermediates, which may form an equilibrium with copper(I)‐(1Z,3Z)‐dienolates. Interestingly, the present methodology is a nice complement to our previous report, in which (E)‐β,γ‐unsaturated pyrazoleamides were employed as the prenucleophiles in the copper(I)‐catalyzed asymmetric vinylogous Mannich‐Type reaction and anti‐vinylogous products were obtained. In the previous reaction, copper(I)‐ (1Z,3E)‐dienolates were generated through α‐deprotonation, which might form an equilibrium with (E)‐allylcopper(I) species. Therefore, it is realized in the presence of a copper(I) catalyst that (E)‐α,β‐unsaturated pyrazoleamides lead to syn‐products and (E)‐β,γ‐unsaturated pyrazoleamides lead to anti‐products. Finally, by use of (E)‐β,γ‐unsaturated pyrazoleamide, (E)‐α,β‐unsaturated pyrazoleamide, (R)‐DTBM‐SEGPHOS, and (S)‐DTBM‐SEGPHOS, the stereodivergent synthesis of all four stereoisomers is successfully carried out. Then by following a three‐step reaction sequence, all four stereoisomers of N‐Boc‐2‐Ph‐3‐Me‐piperidine are synthesized in good yields, which potentially serve as common structure units in pharmaceutically active compounds.  相似文献   

7.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

8.
Previously unexplored enantiopure zwitterionic ammonium dienolates have been utilized in this work as reactive intermediates that act as diene components in hetero‐Diels–Alder reactions (HDAs) with aldehydes to produce optically active δ‐lactones, subunits of numerous bioactive products. The dienolates were generated in situ from E/Z mixtures of α,β‐unsaturated acid chlorides by use of a nucleophilic quinidine derivative and Sn(OTf)2 as co‐catalyst. The latter component was not directly involved in the cycloaddition step with aldehydes and simply facilitated the formation of the reactive dienolate species. The scope of the cycloaddition was considerably improved by use of a complex formed from Er(OTf)3 and a simple commercially available norephedrine‐derived ligand that tolerated a broad range of aromatic and heteroaromatic aldehydes for a cooperative bifunctional Lewis‐acid‐/Lewis‐base‐catalyzed reaction, providing α,β‐unsaturated δ‐lactones with excellent enantioselectivities. Mechanistic studies confirmed the formation of the dienolate intermediates for both catalytic systems. The active ErIII complex is most likely a monomeric species. Interestingly, all lanthanides can catalyze the title reaction, but the efficiency in terms of yield and enantioselectivity depends directly on the radius of the LnIII ion. Similarly, use of the pseudolanthanides ScIII and YIII also resulted in product formation, whereas the larger LaIII and other transition metal salts, as well as main group metal salts, proved to be inefficient. In addition, various synthetic transformations of 6‐CCl3‐ or 4‐silyl‐substituted α,β‐unsaturated δ‐lactones, giving access to a number of valuable δ‐lactone building blocks, were investigated.  相似文献   

9.
Some new derivatives of 3‐chloro‐1‐(4a,10b‐diazaphenanthrene‐2‐yl)‐4‐phenyl azetidin‐2‐one were synthesized through the reaction of N‐{4‐[phenyldiazenyl] phenyl}‐N‐[phenyl methylene] amine with 4‐[phenyldiazenyl] aniline. The resulting 3‐chloro‐4‐phenyl‐1‐{4‐[phenyldiazenyl] phenyl} azetidin‐2‐one intermediate in benzene was irradiated in a Pyrex vessel with 350 nm UV light in a photochemical reactor to give the desired derivatives (4a–j) . Structures of the new compounds were verified on the basis of spectral and elemental methods of analyses. Nine of the prepared compounds were tested for their anti‐inflammatory effects; most of these compounds showed potent and significant results compared with indomethacin.  相似文献   

10.
Parallel and practical methods for the preparation of both (E)‐ and (Z)‐β‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 1 and (E)‐ and (Z)‐α‐aryl1‐β‐aryl2‐α,β‐unsaturated esters 2 are described. These methods involve accessible, robust, stereocomplementary N‐methylimidazole (NMI)‐mediated enol tosylations (14 examples, 70–99 % yield), as well as stereoretentive Suzuki–Miyaura cross‐couplings (36 examples, 64–99 % yield). The highlighted feature of the present protocol is the use of parallel and stereocomplementary approaches to obtain highly (E)‐ and (Z)‐pure products 1 and 2 by utilizing sequential enol tosylations and cross‐coupling reactions. An expeditious and parallel synthesis of (E)‐ and (Z)‐zimelidine ( 3 ), which is a highly representative selective serotonin reuptake inhibitor (SSRI), was performed by utilizing the present methods.  相似文献   

11.
Several reactions of the α,β‐unsaturated thioamide 8 with diazo compounds 1a – 1d were investigated. The reactions with CH2N2 ( 1a ), diazocyclohexane ( 1b ), and phenyldiazomethane ( 1c ) proceeded via a 1,3‐dipolar cycloaddition of the diazo dipole at the C?C bond to give the corresponding 4,5‐dihydro‐1H‐pyrazole‐3‐carbothioamides 12a – 12c , i.e., the regioisomer which arose from the bond formation between the N‐terminus of the diazo compound and the C(α)‐atom of 8 . In the reaction of 1a with 8 , the initially formed cycloadduct, the 4,5‐dihydro‐3H‐pyrazole‐3‐carbothioamide 11a , was obtained after a short reaction time. In the case of 1c , two tautomers 12c and 12c ′ were formed, which, by derivatization with 2‐chlorobenzoyl chloride 14 , led to the crystalline products 15 and 15 ′. Their structures were established by X‐ray crystallography. From the reaction of 8 and ethyl diazoacetate ( 1d ), the opposite regioisomer 13 was formed. The monosubstituted thioamide 16 reacted with 1a to give the unstable 4,5‐dihydro‐1H‐pyrazole‐3‐carbothioamide 17 .  相似文献   

12.
The ‘click synthesis’ of some novel O‐substituted oximes, 7a – 7t , which contain 1,2,3‐triazolediyl residues, as new analogs of β‐adrenoceptor antagonists is described (Schemes 14). The synthesis of these compounds was achieved in four to five steps. The formation of oximes of 9H‐fluoren‐9‐one and benzophenone, i.e., 9a and 9b , respectively, followed by their reaction with propargyl bromide, afforded O‐propargyl oximes 10a and 10b , respectively, which by a subsequent CuI‐catalyzed Huisgen cycloaddition with prepared β‐azido alcohols 11a – 11j (Schemes 2 and 3), led to the target compounds 7a – 7t in good yields.  相似文献   

13.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

14.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

15.
本论文研究了KF-蒙脱土催化下丙二腈与α,β-不饱和酮的迈克尔加成反应,研究发现在不同的反应温度下可以得到加成和环化两种不同的产物。该方法和现有的方法相比具有产率高、反应条件温和、操作简单、试剂易得等优点。  相似文献   

16.
The reaction between 3-methylbenzoxazolinone and some unsaturated acids in PPA leads to mixtures of compounds, depending on the acid: 6-crotonyl- (or cinnamoyl)-3-methylbenzoxazolinones, 2,3-dihydro-2,5-(or 2,7)dioxo-3-methylcyclopenta[f]benzoxazoles and 6-(3-oxo-indanyl)-3-methylbenzoxazolinones. The structure of the products was established by 13C and 1H nmr spectroscopy and (or) by independent synthesis. Possible mechanisms of the reaction are discussed; when competition is possible as in the last step of the cyclization, the benzene ring shows a higher reactivity than the aromatic nucleus of the benzoxazolinone; the contrary is observed when the benzene ring is p-chloro-substituted.  相似文献   

17.
The reaction of Ph3P=NLi with various α,β‐unsaturated esters gives access to new N‐(α,β‐unsaturated acyl) phosphinimines, which can undergo intramolecular aza‐Wittig reactions (at 65–110°C) to afford the corresponding nitriles. The structures of all new compounds were established by elementary analyses, IR, 1H‐, 13C‐, and 31P‐NMR spectroscopy. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 49–54, 1999  相似文献   

18.
UV.-Irradiation of methyl t-butyl ketone, di-t-butyl ketone, pivalaldehyde and isobutyraldehyde in benzene solution leads to chemically induced dynamic nuclear polarization (CIDNP.) of the parent compounds and of various reaction products. CIDNP.-effects and product distributions establish type I α-cleavage predominantly of triplet state molecules as the major primary photochemical step for all the four α-branched carbonyl compounds. In chlorinated solvents singlet reactions interfere with the triplet processes.  相似文献   

19.
The Riemschneider reaction of 3‐thiocyanatoquinoline‐2,4(1H,3H)‐diones with conc. H2SO4 was investigated. Using different reaction conditions, 13 types of reaction products were isolated. Compounds bearing a Me, Et, or Bu group at C(3) afforded mainly [1,3]thiazolo[5,4‐c]quinoline‐2,4‐diones and 1,9b‐dihydro‐9b‐hydroxythiazolo[5,4‐c]quinoline‐2,4‐diones. In the case of the 3‐Bu derivatives of the starting compounds, C‐debutylation was also observed. If a Bn group is present at C(3), rapid C‐debenzylation of the starting thiocyanates occurred, yielding [1,3]oxathiolo[4,5‐c]quinoline‐2,4‐diones, and mixtures of mono‐, di‐, and trisulfides derived from 4‐hydroxy‐3‐sulfanylquinoline‐2‐ones. The reaction mechanism of all of the transformations is discussed. All new compounds were characterized by IR, 1H‐ and 13C‐NMR, and EI and ESI mass spectra, and in some cases, 15N‐NMR spectra were also used to characterize new compounds.  相似文献   

20.
The photoinitiated thiol?ene addition reaction is a highly stereo‐ and regioselective, and environmentally friendly reaction proceeding under mild conditions, hence it is ideally suited for the synthesis of carbohydrate mimetics. A comprehensive study on UV‐light‐induced reactions of 2,3‐unsaturated O‐, C‐, S‐ and N‐glycosides with various thiols was performed. The effect of experimental parameters and structural variations of the alkenes and thiols on the efficacy and regio‐ and stereoselectivity of the reactions was systematically studied and optimized. The type of anomeric heteroatom was found to profoundly affect the reactivity of 2,3‐unsaturated sugars in the thiol?ene couplings. Hydrothiolation of 2,3‐dideoxy O‐glycosyl enosides efficiently produced the axially C2‐S‐substituted addition products with high to complete regioselectivity. Moderate efficacy and varying regio‐ and stereoselectivity were observed with 2,3‐unsaturated N‐glycosides and no addition occurred onto the endocyclic double bond of C‐glycosides. Upon hydrothiolation of 2,3‐unsaturated S‐glycosides, the addition of thiyl radicals was followed by elimination of the thiyl aglycone resulting in 3‐S‐substituted glycals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号