首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work deals with an analysis of biologically important compounds in complex matrices using preparative isotachophoresis (pITP) in column coupling configuration as a sample pretreatment technique followed by a direct infusion mass spectrometry with nano‐electrospray ionization (DI‐nESI‐MS). Busereline was chosen as a model analyte, and urine was chosen as an example of complex matrix. In pITP experiments, sodium cation (10 mmol/L concentration) was used as a leading ion and β‐alanine as terminating ion (20 mmol/L concentration). The fractions, obtained by pITP pre‐separation with the assistance of the mixture of discrete spacers, were finally analyzed by DI‐nESI‐MS. It was shown that pITP performed before DI‐nESI‐MS analysis can significantly simplify complex matrix, and, due to its concentration power, pITP can consequently decrease the concentration limit of detection. The concentration of buserelin in the urine samples analyzed by pITP‐DI‐nESI‐MS was 10 μg/L (reflecting at a 8.10?9 mol/L concentration) in our work but from the ion intensities obtained in MS as well as MS/MS analyses, it is clear that this concentration level could be several orders of magnitude lower for reliable detection and identification of buserelin in urine analyzed using pITP with DI‐nESI‐MS detection.  相似文献   

2.
The effect of metabolite interference during liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of an amine drug was investigated using FAIMS (high‐Field Asymmetric waveform Ion Mobility Spectrometry). The selected reaction monitoring (SRM) transition used for the drug exhibited an interference due to in‐source conversion of the N‐oxide metabolite to generate an ion isobaric with the drug. The on‐line FAIMS device removed the metabolite interference before entrance to the mass spectrometer. FAIMS was used to demonstrate the relative accuracy and precision of drug analysis even in the presence of a co‐eluting metabolite that may undergo in‐source conversion. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The potential of high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to nanoelectrospray ionization (nanoESI) as a method to improve sample throughput for bioanalysis in a discovery pharmaceutical setting was explored in this work. The ability of FAIMS to separate gas-phase ions in the millisecond timescale was exploited to eliminate the need for liquid chromatography. Samples were introduced into the FAIMS electrodes/mass spectrometer using offline nanoESI at 20 nL/min and 1.5 kV. Signals were averaged for 30 s after which the next sample could be analyzed. The separation of simple mixtures, e.g., the removal of metabolite and endogenous interferences from parent drug, was demonstrated. Moreover, the application of nanoESI attenuated the ion suppression effects that normally plague conventional electrospray. On average, approximately two-thirds of the neat sample signal intensity was preserved in extracted plasma samples. Standard curves were prepared for several compounds and linearity was obtained over approximately two to three orders of magnitude. This methodology was further tested with the analysis of plasma samples from a mouse pharmacokinetic study. Concentration values determined using nanoESI-FAIMS were comparable to those determined using conventional LC/MS as demonstrated by percent differences of less than 30%. This work demonstrated the proof of concept that the combination of FAIMS and nanospray ionization can be a potentially useful tool to improve the throughput of discovery bioanalysis.  相似文献   

4.
采用高场非对称波形离子迁移谱(FAIMS)对二乙醇胺(DEA)进行快速检测分析, 以热解析法进样, 确定了二乙醇胺的离子特征信号, 并与气相色谱-质谱联用仪的检测结果进行了比较. 用聚四氟乙烯(PTFE)扩散管进样, 控制二乙醇胺样品气(DEA与空气的混合气)浓度, 利用FAIMS对不同浓度的二乙醇胺样品气进行检测. 通过对离子特征信号进行量化和重复性分析, 确定了二乙醇胺样品气的检出限为0.02 μg/L, 并建立了FAIMS检测二乙醇胺样品气的离子电流强度积分面积与样品气浓度关系曲线. 为FAIMS应用于现场快速检测二乙醇胺提供了一定的依据.  相似文献   

5.
Mass spectrometry (MS) profiling techniques are used for analysing metabolites and xenobiotics in biofluids; however, detection of low abundance compounds using conventional MS techniques is poor. To counter this, nanoflow ultra‐high‐pressure liquid chromatography‐nanoelectrospray ionization‐time‐of‐flight MS (nUHPLC‐nESI‐TOFMS), which has been used primarily for proteomics, offers an innovative prospect for profiling small molecules. Compared to conventional UHPLC‐ESI‐TOFMS, nUHPLC‐nESI‐TOFMS enhanced detection limits of a variety of (xeno)metabolites by between 2 and 2000‐fold. In addition, this study demonstrates for the first time excellent repeatability and reproducibility for analysis of urine and plasma samples using nUHPLC‐nESI‐TOFMS, supporting implementation of this platform as a novel approach for high‐throughput (xeno)metabolomics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Differential mobility spectrometry or field asymmetric waveform ion mobility spectrometry (FAIMS) is gaining broad acceptance for analyses of gas-phase ions, especially in conjunction with largely orthogonal separation methods such as mass spectrometry (MS) and/or conventional (drift tube) ion mobility spectrometry. In FAIMS, ions are filtered while passing through a gap between two electrodes that may have planar or curved (in particular, cylindrical) geometry. Despite substantial inherent advantages of the planar configuration and its near-universal adoption in current stand-alone FAIMS devices, commercial FAIMS/MS systems have employed curved FAIMS geometries that can be more effectively interfaced to MS. Here we report a new planar (p-) FAIMS design with slit-shaped entrance and exit apertures that substantially increase ion transmission in and out of the analyzer. The entrance slit interface effectively couples p-FAIMS to multi-emitter electrospray ionization (ESI) sources, improving greatly the ion current introduced to the device and allowing liquid flow rates up to ∼50 μL/min. The exit slit interface increases the transmission of ribbon-shaped ion beams output by the p-FAIMS to downstream stages such as a MS. Overall, the ion signal in ESI/FAIMS/MS analyses increases by over an order of magnitude without affecting FAIMS resolution.  相似文献   

7.
Cylindrical geometry high-field asymmetric waveform ion mobility spectrometry (FAIMS) focuses and separates gas-phase ions at atmospheric pressure and room (or elevated) temperature. Addition of helium to a nitrogen-based separation medium offers significant advantages for FAIMS including improved resolution, selectivity and sensitivity. Aside from gas composition, ion transmission through FAIMS is governed by electric field strength (E/N) that is determined by the applied voltage, the analyzer gap width, atmospheric pressure and electrode temperature. In this study, the analyzer width of a cylindrical FAIMS device is varied from 2.5 to 1.25 mm to achieve average electric field strengths as high as 187.5 Townsend (Td). At these electric fields, the performance of FAIMS in an N(2) environment is dramatically improved over a commercial system that uses an analyzer width of 2.5 mm in 1:1 N(2) /He. At fields of 162 Td using electrodes at room temperature, the average effective temperature for the [M+2H](2+) ion of angiotensin II reaches 365 K. This has a dramatic impact on the curtain gas flow rate, resulting in lower optimum flows and reduced turbulence in the ion inlet. The use of narrow analyzer widths in a N(2) carrier gas offers previously unattainable baseline resolution of the [M+2H](2+) and [M+3H](3+) ions of angiotensin II. Comparisons of absolute ion current with FAIMS to conventional electrospray ionization (ESI) are as high as 77% with FAIMS versus standard ESI-MS.  相似文献   

8.
A multiplexed system based on inductive nanoelectrospray mass spectrometry (nESI‐MS) has been developed for high‐throughput screening (HTS) bioassays. This system combines inductive nESI and field amplification micro‐electrophoresis to achieve a “dip‐and‐go” sample loading and purification strategy that enables nESI‐MS based HTS assays in 96‐well microtiter plates. The combination of inductive nESI and micro‐electrophoresis makes it possible to perform efficient in situ separations and clean‐up of biological samples. The sensitivity of the system is such that quantitative analysis of peptides from 1–10 000 nm can be performed in a biological matrix. A prototype of the automation system has been developed to handle 12 samples (one row of a microtiter plate) at a time. The sample loading and electrophoretic clean‐up of biosamples can be done in parallel within 20 s followed by MS analysis at a rate of 1.3 to 3.5 s per sample. The system was used successfully for the quantitative analysis of BACE1‐catalyzed peptide hydrolysis, a prototypical HTS assay of relevance to drug discovery. IC50 values for this system were in agreement with LC‐MS but recorded in times more than an order of magnitude shorter.  相似文献   

9.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) was used to separate gas-phase conformers of bovine ubiquitin produced by electrospray ionization. These conformers were sampled by a triple quadrupole mass spectrometer where energy-loss experiments, following the work of Douglas and co-workers, were used to determine their cross sections. The measured cross sections for some conformers were readily altered by the voltages applied to the interface ion optics, therefore very gentle mass spectrometer interface conditions were required to preserve gas-phase conformers separated by FAIMS. Cross sections for 19 conformers (charge states +5 through +13) were measured. Two conformers for the +12 charge state, which were readily separated in FAIMS, were found to have similar cross sections. Based on a method to calibrate the collision gas thickness, the cross sections measured using the FAIMS/energy-loss method were compared with literature values determined using drift tube ion mobility spectrometry. The comparison illustrated that the conformers of bovine ubiquitin that were identified using drift tube ion mobility spectrometry were also observed using the FAIMS device.  相似文献   

10.
A tandem FAIMS–FAIMS system for ion trapping at room temperature and atmospheric pressure is described. The first FAIMS device consisted of a side-to-side configuration (sFAIMS) suitable for ion separation, whereas the second FAIMS device was appropriate for ion trapping (tFAIMS). Ions pre-selected by the sFAIMS entered the tFAIMS and were captured by virtual trapping fields at the hemispherical tip of the inner electrode. The use of the sFAIMS, with wider electrode diameters, and consequently better ion separation efficiency than the tFAIMS, lowered the number of background ions captured in the trapping region of tFAIMS, and thus reduced the space charge effects in the trap. This tandem device was coupled to a laboratory built time-of-flight mass spectrometer and was evaluated using the electrospray generated [M + 2H]2+ ion of gramicidin S. The half-time (t1/2) of the exponential decay of the ion cloud in tFAIMS, determined by monitoring the residual intensity of ions extracted from the ion trapping region of tFAIMS after various delay times, was about 2 s.  相似文献   

11.
High‐field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion‐filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS‐MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate ≥2 L/min) to ensure stable response. Low‐mass ions (m/z 100–200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200–700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage ?5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70°C and outer electrode temperature 90°C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
High‐field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the characteristics of nonlinear ion mobility at high and low electric fields. Accurate ion discrimination depends on the precise solution of nonlinear relationships and is essential for accurate identification of ion species for applications. So far, all the nonlinear relationships of ion mobility obtained are based at low electric fields (E/N <65 Td). Microchip FAIMS (μ‐FAIMS) with small dimensions has high electric field up to E/N = 250 Td, making the approximation methods and conclusions for nonlinear relationships inappropriate for these systems. In this paper, we deduced nonlinear functions based on the first principle and a general model. Furthermore we considered the hydrodynamics of gas flow through microchannels. We then calculated the specific alpha coefficients for cocaine, morphine, HMX, TNT and RDX, respectively, based on their FAIMS spectra measured by μ‐FAIMS system at ultra‐high fields up to 250 Td. The results show that there is no difference in nonlinear alpha functions obtained by the approximation and new method at low field (<120 Td), but the error induced by using approximation method increases monotonically with the increase in field, and could be as much as 30% at a field of 250 Td. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Since the development of electrospray ionization (ESI) for ion mobility spectrometry mass spectrometry (IMMS), IMMS have been extensively applied for characterization of gas-phase bio-molecules. Conventional ion mobility spectrometry (IMS), defined as drift tube IMS (DT-IMS), is typically a stacked ring design that utilizes a low electric field gradient. Field asymmetric ion mobility spectrometry (FAIMS) is a newer version of IMS, however, the geometry of the system is significantly different than DT-IMS and data are collected using a much higher electric field. Here we report construction of a novel ambient pressure dual gate DT-IMS coupled with a FAIMS system and then coupled to a quadrupole ion trap mass spectrometer (QITMS) to form a hybrid three-dimensional separation instrument, DT-IMS-FAIMS-QITMS. The DT-IMS was operated at ~3 Townsend (electric field/number density (E/N) or (Td)) and was coupled in series with a FAIMS, operated at ~80 Td. Ions were mobility-selected by the dual gate DT-IMS into the FAIMS and from the FAIMS the ions were detected by the QITMS for as either MS or MSn. The system was evaluated using cocaine as an analytical standard and tested for the application of separating three isomeric tri-peptides: tyrosine-glycine-tryptophan (YGW), tryptophan-glycine-tyrosine (WGY) and tyrosine-tryptophan-glycine (YWG). All three tri-peptides were separated in the DT-IMS dimension and each had one mobility peak. The samples were partially separated in the FAIMS dimension but two conformation peaks were detected for the YWG sample while YGW and WGY produced only one peak. Ion validation was achieved for all three samples using QITMS.  相似文献   

14.
一种微型FAIMS传感器芯片的研制   总被引:1,自引:0,他引:1  
李华  王晓浩  唐飞  张亮  杨吉  吝涛  丁力 《物理化学学报》2010,26(5):1355-1363
基于微机电系统(MEMS)技术,研制了一种微型高场非对称波形离子迁移谱(FAIMS)传感器芯片.芯片尺寸为18.8mm×12.4mm×1.2mm,由离子化区、迁移区、离子检测区组成.采用真空紫外灯离子源在大气压环境下对样品进行离子化,经过离子化区中聚焦电极的电场作用,实现离子在进入迁移区之前的聚焦,提高离子信号的强度.通过在上下玻璃上溅射Au/Cr(300nm/30nm)金属,并与厚度为200μm、采用感应耦合等离子体(ICP)工艺刻蚀的硅片键合,形成迁移区的矩形通道,尺寸为10mm×5mm×0.2mm.离子检测区为三排直径200μm、间距100μm交错排列的圆柱阵列式微法拉第筒,能同时检测正负离子.采用频率为2MHz,最大电压为364V,占空比为30%的高场非对称方波电压进行FAIMS芯片实验.以丙酮和甲苯为实验样品,载气流速80L·h-1,补偿电压从-10V到3V以0.1V的步长进行扫描,得到了丙酮和甲苯的FAIMS谱图,验证了FAIMS芯片的性能.丙酮和甲苯的FAIMS-MS实验进一步表明FAIMS系统实现了离子分离和过滤功能.  相似文献   

15.
High field asymmetric waveform ion mobility spectrometry (FAIMS) provides atmospheric pressure, room temperature, low-resolution separation of gas-phase ions. The FAIMS analyzer acts as an ion filter that can continuously transmit one type of ion, independent of m/z. The combination of FAIMS with electrospray ionization and mass spectrometry (ESI-FAIMS-MS) is a powerful technique and is used in this study to investigate the cluster ions of leucine enkephalin (YGGFL). Separation by FAIMS of leucine enkephalin ions having the same m/z (m/z 556.5), [M + H]+ and [2M + 2H]2+, was observed. In addition, four complex ions of leucine enkephalin, [2M + H]+, [4M + 2H]2+, [6M + 3H]3+, and [8M + 4H]4+, all having m/z 1112, were shown to be separated in FAIMS. Fragmentation of ions as the result of harsh conditions within the mass spectrometer interface (FAIMS-MS) was shown to provide similar information to that obtained from MS/MS experiments in conventional ESI-MS.  相似文献   

16.
The use of field asymmetric waveform ion mobility spectrometry (FAIMS) has rapidly grown with the advent of commercial FAIMS systems coupled to mass spectrometry. However, many fundamental aspects of FAIMS remain obscure, hindering its technological improvement and expansion of analytical utility. Recently, we developed a comprehensive numerical simulation approach to FAIMS that can handle any device geometry and operating conditions. The formalism was originally set up in one dimension for a uniform gas flow and limited to ideal asymmetric voltage waveforms. Here we extend the model to account for a realistic gas flow velocity distribution in the analytical gap, axial ion diffusion, and waveform imperfections (e.g., noise and ripple). The nonuniformity of the gas flow velocity profile has only a minor effect, slightly improving resolution. Waveform perturbations are significant even at very low levels, in some cases approximately 0.01% of the nominal voltage. These perturbations always improve resolution and decrease sensitivity, a trade-off controllable by variation of noise or ripple amplitude. This trade-off is physically inferior to that obtained by adjusting the gap width and/or asymmetric waveform frequency. However, the disadvantage is negligible when the perturbation period is much shorter than the residence time in FAIMS, and ripple adjustment appears to offer a practical method for modifying FAIMS resolution.  相似文献   

17.
The analysis of peptides presents serious challenges for bioanalytical scientists including low total ion current and non‐selective fragmentation during tandem mass spectrometry (MS/MS). During method validation of a peptide in rat serum matrix some interferences could not be easily removed and thus prevented accurate and precise measurement. These problems associated with peptide quantitation were resolved by using FAIMS (high‐Field Asymmetric waveform Ion Mobility Spectrometry). This selectivity‐enhancing technique filters out matrix interferences, and the resulting pseudo‐selected reaction monitoring (pseudo‐SRM) chromatograms were nearly free from interferences. Control blank matrix samples contained an acceptable level of interference (only 7% signal as compared to the lower level of quantitation). Chromatographic peaks were easily, accurately and precisely integrated resulting in a validated liquid chromatography (LC)/FAIMS‐MS/MS method for the analysis of a peptide drug in rat serum according to United States Food and Drug Administration (US FDA) bioanalytical guidelines. These results confirm that new selectivity‐enhancing technologies aid the pharmaceutical industry in reliably producing acceptable pharmacokinetic data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The separation and ion focusing properties of High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) depend on desolvated ions entering the device, leading to a compound-specific, reproducible compensation voltage (CV) for each ion. This study shows that the conditions identified for stable spray and satisfactory ion desolvation in normal electrospray ionization mass spectrometry (ESI-MS) operation might significantly differ from those required for FAIMS-MS. In a typical setup with high-flow electrospray conditions, ions could be incompletely desolvated, resulting in the formation of unidentified clusters with differing behavior in a FAIMS environment. This causes compound-specific shifts of as much as 10 V in CV values when the mobile phase composition and/or flow rate are varied. The shifts diminish and finally disappear when the flow rate of methanol, used as mobile phase, is reduced to 40 microL/min and that of acetonitrile to 20 microL/min. The reproducibility of the observed CV was determined by scanning the CV while infusing a five-component mixture into a 400 microL/min flow of methanol or 50:50 acetonitrile/water. The relative standard deviation (RSD) for these multiple scans ranged from 0.7% to 6%. Therefore, under a constant set of experimental parameters, the CV does not shift appreciably. These observations have an impact on method development strategies. High flow rates can be used with the FAIMS device, since the CV values are reproducible, but it is likely that clusters are forming. Therefore, CV scans should be performed under conditions which mimic the chromatographic elution or flow injection analysis conditions, including matrix composition, to minimize errors in CV determination. An alternative approach is to determine the liquid flow rate at which the CV becomes compound-specific and to split the mobile phase stream accordingly. These experimental results may be specific to the setup used for this study and may not be directly applicable to other instrument FAIMS devices.  相似文献   

19.
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (λ=116.5 nm).The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed.With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.  相似文献   

20.
High‐field asymmetric ion mobility spectrometry (FAIMS) has become an efficient technique for separation and characterization of gas‐phase ions at ambient pressure, which utilizes the mobility differences of ions at high and low fields. Micro FAIMS devices made by micro‐electromechanical system technology have small gaps of the channels, high electric field and good installation precision, as thus they have received great attentions. However, the disadvantage of relatively low resolution limits their applications in some areas. In this study, theoretical analysis and experimental exploration were carried out to overcome the disadvantage. Multiple scans, characteristic decline curves of ion transmission and pattern recognitions were proposed to improve the performance of the microchip‐based FAIMS. The results showed that although micro FAIMS instruments as a standalone chemical analyzer suffer from low resolution, by using one or more of the methods proposed, they can identify chemicals precisely and provide quantitative analysis with low detection limit in some applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号