首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compute solitary wave solutions of a Hamiltonian model for large-amplitude long internal waves in a two-layer stratification. Computations are performed for values of the density and depth ratios close to oceanic conditions, and comparisons are made with solutions of both weakly and fully nonlinear models. It is shown that characteristic features of highly nonlinear solitary waves such as broadening are reproduced well by the present model. To cite this article: Ph. Guyenne, C. R. Mecanique 334 (2006).  相似文献   

2.
This Note investigates the effect of a renormalization technique on high-order shallow water approximations of gravity waves. The method is illustrated for the solitary surface wave. Applied to the solution of a generalized KdV equation, it is shown that the renormalization significantly increases the accuracy. To cite this article: D. Clamond, D. Fructus, C. R. Mecanique 331 (2003).  相似文献   

3.
It is shown that the micro-displacement gradient allows the propagation of two-dimensional localized long nonlinear strain waves in a medium with microstructure. These waves may exist even in the presence of dissipation and energy input in the microstructured medium but with selected values of the wave amplitude and velocity. An increase or a decrease in the wave amplitude and velocity happens faster at the initial stage than that of the plane localized wave. However, their steady values selected by the energy input/output, are higher for the plane waves. To cite this article: A.V. Porubov et al., C. R. Mecanique 332 (2004).  相似文献   

4.
5.
The nonlinear problem for propagation of wave-packets along the interface of two semi-infinite fluids is solved on the basis of multiple scale asymptotic expansions. Unlike all previous investigations dealing only with third-order approximations, here fourth-order approximation is developed. The corresponding solvability condition is obtained and the evolution equation in the case away from the cut-off wave number is derived. As a result, the nonlinear higher-order Schrödinger equation is obtained which contains the nonlinear part in a compact form. This equation is valid for a wide range of wave numbers. The stability diagram shows regions of stability and instability of capillary-gravity wave-packets. To cite this article: I. Selezov et al., C. R. Mecanique 331 (2003).  相似文献   

6.
The special class of periodic travelling waves which is known as roll waves is investigated for nonhomogeneous hyperbolic equations of gas dynamics type. In this Note these equations are applied to shallow water flows in inclined open channels, but the results obtained are more general and far-reaching. The necessary conditions for the existence of a roll wave are derived. It is shown that for a nonconvex pressure term, multi-shock configurations of roll waves of finite amplitude exist. A new type of periodic travelling wave, which corresponds to the slug flow regime in two-layer flows, is found. To cite this article: A. Boudlal, V.Yu. Liapidevskii, C. R. Mecanique 332 (2004).  相似文献   

7.
The antiplane motion of a transversely isotropic piezoelectric half-space is considered. An explicit asymptotic model is derived for the far field of the surface wave. It involves, in particular, a 1D hyperbolic equation for surface shear deformation propagating with the finite wave speed predicted for the first time by J.L. Bleustein and Yu.V. Gulyaev. Neumann and Dirichlet problems are formulated to restore interior mechanical and electric fields. The derivation utilizes asymptotic arguments combined with Lourier symbolic integration. Comparison with the exact solution is presented for surface impact loading. To cite this article: J. Kaplunov et al., C. R. Mecanique 332 (2004).  相似文献   

8.
The scope of this Note is to show the results obtained for simulating the two-dimensional head-on collision of two solitary waves by solving the Navier–Stokes equations in air and water. The work is dedicated to the numerical investigation of the hydrodynamics associated to this highly nonlinear flow configuration, the first numerical results being analyzed. The original numerical model is proved to be efficient and accurate in predicting the main features described in experiments found in the literature. This Note also outlines the interest of this configuration to be considered as a test-case for numerical models dedicated to computational fluid mechanics. To cite this article: P. Lubin et al., C. R. Mecanique 333 (2005).  相似文献   

9.
For the first time, the multi-frame shadow visualization technique coupled with a laser stroboscopic source of light has been used to obtain data on the dynamics of irregularly shaped bodies in the flow behind shock wave. A procedure for determining body acceleration from body trajectory is proposed, which, together with the diagnostic technique used, represents a kind of contactless aerodynamic balance. Drag data for spheres and irregularly shaped bodies in the flow behind shock wave with Mach number of 0.5 to 1.5 and Reynolds number of 105 are reported. To cite this article: V.M. Boiko, S.V. Poplavski, C. R. Mecanique 332 (2004).  相似文献   

10.
This paper presents a method to estimate reflected and transmitted wave amplitude spectra in a bounded domain such as a wave tank, when available data signals must be shortened due to interferences and wall effects. This paper extends the well known Goda and Suzuki two-probe method to three probes. The paper also suggests solutions to compute reliable transmission and reflection coefficients in spite of problems linked to higher harmonics and to the interference between different wave trains propagating in the tank. To cite this article: G. Duclos, A.H. Clément, C. R. Mecanique 331 (2003).  相似文献   

11.
12.
The existence and propagation of the surface waves at a vacuum/porous medium interface are investigated in the low frequency range. Two types of surface waves are shown to be possible: the generalized Rayleigh wave, which always exists, and the Stoneley wave, which exists for a limited range of wave numbers. Moreover, within the k-domain of existence the Stoneley wave cannot appear for certain values of elastic parameters of the solid phase. The bifurcation behavior of both the Stoneley wave and the Biot (P2) bulk wave, depending on the wave number, is revealed. The asymptotic formulas for the phase velocities of the surface waves are derived. To cite this article: I. Edelman, C. R. Mecanique 332 (2004).  相似文献   

13.
Interaction between solitons and a sandy bed in shallow water is investigated. In our experiments, solitons are generated on the background of a harmonic wave, in a wave flume used in resonant mode. It is found that the sand ripples formed by the solitons propagation induce a significant decrease of solitons amplitude and of the phase shift between the soliton and the harmonic wave. However, the amplitude of the harmonic wave is approximately constant. The possible physical processes of such behaviour for the soliton amplitude and for the harmonic wave amplitude are discussed. To cite this article: F. Marin et al., C. R. Mecanique 333 (2005).  相似文献   

14.
A brief overview is given of specific features that can (or cannot) appear in the dispersion spectra of traction-free elastic homogeneous plates due to anisotropy. Its effect on the overall spectral configuration and on the short and long wave trends is illuminated with a link to anisotropic traits of bulk and surface waves. Relevant classical and recent results are put together, and new points are established. To cite this article: A.L. Shuvalov, C. R. Mecanique 334 (2006).  相似文献   

15.
The present Note describes some experimental work related to the nonlinear propagation of acoustic waves in granular media such as unconsolidated glass beads. The studied nonlinear effect is a self-demodulation process performed with the operation of the so-called parametric transmitting antenna. The pump (or carrier) wave is generated by a high power ultrasonic broad-band transducer (100 kHz central frequency) which is LF (low frequency, i.e., a few kHz) amplitude modulated. As the attenuation of acoustic waves increases with frequency, only the LF demodulated wave can be transmitted. A parametric study is performed where the HF central frequency is monitored between 60 and 300 kHz. The LF demodulation profile versus the HF frequency is modified, its shape being temporally derived almost twice. A numerical analysis of the order of temporal derivation is done in the Fourier domain, its value varying from 1.25 to 2.7. Qualitative agreement with current theoretical models is described, and an advanced theoretical analysis by the same authors [Phys. Rev. E 66 (2002) 041303], taking into account absorption, nonlinearity, dispersion and scattering, is briefly discussed. To cite this article: V. Tournat et al., C. R. Mecanique 331 (2003).  相似文献   

16.
A direct numerical simulation is carried out to describe the amplitude vacillation phenomena appearing between two successive steady regular waves flows in an air-filled differentially heated rotating annulus. For a fixed temperature difference, ΔT=30 K, when varying progressively the rotation rate, we have obtained the occurrence of the two amplitude vacillation instabilities observed experimentally by Read et al. (J. Fluid Mech. 238 (1992) 599–632) with a high Prandtl number fluid. The first one, denoted AV is characterized by a doubly periodic temporal behaviour with a periodic variation of wave amplitudes, while the second one corresponds to a torus-3 quasi-periodic or chaotic motion with the presence of a modulation in the wave amplitudes evolution. To cite this article: P. Maubert, A. Randriamampianina, C. R. Mecanique 331 (2003).  相似文献   

17.
In this paper, the governing equation for the non-propagating solitary waves, similar to the cubic Schrödinger equation, is derived by the multiple scales with the consideration of surface tension. The non-propagating solitary wave solution is given. It is explained by the capillary-gravity wave theory that the crests are sharpened and the troughs are flattened in the transversal harmonic of the non-propagating solitary waves. On σ~kh plane, two parameter regions are obtained in which the non-propagating solitary wave can occur, but all existing experimental parameters are in region 1 (Fig. 1).  相似文献   

18.
It is shown that the influence of closed frictionless cracks on overall elasticity can be evaluated by estimates based on Eshelby's theory. The idea consists in replacing the closed cracks by a ficticious material with shear modulus equal to 0 and a bulk modulus identical to that of the solid. Progressive crack closure is responsible for the nonlinearity of the overall elasticity. From this phenomenon, the distribution of crack density as a function of the initial aspect ratio can be determined. To cite this article: V. Deudé et al., C. R. Mecanique 330 (2002) 587–592.  相似文献   

19.
This Note presents a probabilistic model of transient wave reflection at a fluid–solid interface. The configuration represents an ultrasonic experiment used for bone tissue evaluation. The parametric method is used to derive the probabilistic model for the mechanical parameters of the solid (bone); the associated random variables are derived according to the maximum entropy principle. A Monte Carlo simulation, associated with the Cagniard–de Hoop method to calculate the acoustic response, yields the probability density for an output ultrasonic parameter similar to the velocity of longitudinal waves in the solid. Results demonstrate the sensitivity of the probability density of this parameter to the experimental setup. To cite this article: K. Macocco et al., C. R. Mecanique 333 (2005).  相似文献   

20.
The study of the physical structure of filled elastomers makes us able to identify the state variables needed to model the behavior of elastomeric materials. We build a thermodynamics potential (written for finite strains and in 3D) which accounts for the nonlinearity of the behavior, for a hysteresis independent of the time and of the loading rate and for Mullins effect, this without introducing damage. The model can be coupled with damage to predict the crack initiation conditions under monotonic and/or cyclic loading. To cite this article: S. Cantournet, R. Desmorat, C. R. Mecanique 331 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号