首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

2.
The synthesis and comprehensive characterization of the first dicationic tellurium analogues of N‐heterocyclic carbenes (NHCs) has been reported, in both the +2 and +4 oxidation states. For the +2 oxidation state, a base‐stabilized form of TeCl2 is used as the starting material. The dications are isolated by means of halide metathesis and the solid‐state structures confirm the previously calculated diimine bonding arrangement. For TeIV, a diamine is used in a high‐yielding dehydrohalogen coupling reaction from TeCl4. The dicationic NHC analogue is isolated in a base‐stabilized form through halide abstraction and subsequent coordination by pyridine.  相似文献   

3.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

4.
The synthesis and full structural and spectroscopic characterization of three 5‐(1,2,4‐triazol‐C‐yl)tetrazol‐1‐ol compounds with selected energetic moieties including nitrimino ( 5 ), nitro ( 6 ) and azido ( 7 ) groups are reported. The influence of those energetic moieties as well as the C? C connection of a tetrazol‐1‐ol and a 1,2,4‐triazole on structural and energetic properties has been investigated. All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 5 – 8 were determined in the solid state by single‐crystal X‐ray diffraction. The standard heats of formation were calculated on the CBS‐4M level of theory utilizing the atomization energy method, revealing highly positive values for all compounds. The detonation parameters were calculated with the EXPLO5 program and compared to the common secondary explosive RDX. Additionally, sensitivities towards impact, friction and electrostatic discharge were determined.  相似文献   

5.
The first N‐heterocyclic carbene adducts of arylchlorosilylenes are reported and compared with the homologous germanium compounds. The arylsilicon(II) chlorides SiArCl(Im‐Me4) [Ar=C6H3‐2,6‐Mes2 (Mes=C6H2‐2,4,6‐Me3), C6H3‐2,6‐Trip2 (Trip=C6H2‐2,4,6‐iPr3)] were obtained selectively on dehydrochlorination of the arylchlorosilanes SiArHCl2 with 1,3,4,5‐tetramethylimidazol‐2‐ylidene (Im‐Me4). The analogous arylgermanium(II) chlorides GeArCl(Im‐Me4) were prepared by metathetical exchange of GeCl2(Im‐Me4) with LiC6H3‐2,6‐Mes2 or addition of Im‐Me4 to GeCl(C6H3‐2,6‐Trip2). All compounds were fully characterized. Density functional calculations on ECl(C6H3‐2,6‐Trip2)(Im‐Me4), where E=Si, Ge, at different levels of theory show very good agreement between calculated and experimental bonding parameters, and NBO analyses reveal similar electronic structures of the two aryltetrel(II) chlorides. The low gas‐phase Gibbs free energy of bond dissociation of SiCl(C6H3‐2,6‐Trip2)(Im‐Me4) (Δ${G{{{\circ}\hfill \atop {\rm calcd}\hfill}}}$ =28.1 kJ mol?1) suggests that the carbene adducts SiArCl(Im‐Me4) may be valuable transfer reagents of the arylsilicon(II) chlorides SiArCl.  相似文献   

6.
In this contribution the synthesis and full structural as well as spectroscopic characterization of three 5‐(1,2,4‐triazol‐3‐yl)tetrazoles along with selected energetic moieties like nitro, nitrimino, and azido groups are presented. The main goal is a comparative study on the influence of those variable energetic moieties on structural and energetic properties. A complete characterization including IR and Raman as well as multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and reveal insights into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory and reveal high positive heats of formation for all compounds. The calculated detonation parameters (using the EXPLO5.05 program) are in the range of 8000 m s?1 (8097 m s?1 ( 5 ), 8020 m s?1 ( 6 ), 7874 m s?1 ( 7 )). As expected, the measured impact and friction sensitivities as well as decomposition temperatures strongly depend on the energetic moiety at the triazole ring. The C? C connection of a triazole ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole ring, implying a large energy content, leads to the selective synthesis of primary and secondary explosives.  相似文献   

7.
《中国化学会会志》2017,64(4):420-426
Six new silver complexes containing symmetrical N ‐heterocyclic carbene (NHC ) ligands were synthesized by the reaction of azolium salts with Ag2O in CH2Cl2 . These complexes were tested against Gram‐negative bacterial strains (Escherichia coli and Pseudomonas aeruginosa ), Gram‐positive bacterial strains (Enterococcus faecalis and Staphylococcus aureus ), and fungal strains (Candida albicans and Candida tropicalis ), and all tested complexes showed good activity against the different microorganisms.  相似文献   

8.
N‐Heterocyclic carbene (NHC) organocatalysis has been developed as an important approach in modern organic synthesis. Versatile activation modes within NHC organocatalysis have been established with countless transformations being realized in both efficient and selective fashion. We would like to provide an overview on the key progresses achieved within this field in the past two decades. Since numerous excellent reviews have been documented within this area, we will mainly focus on the scientific development of this research field based on the basic reaction modes and typical reaction intermediates.   相似文献   

9.
In this contribution, the synthesis and full structural and spectroscopic characterization of five bis‐1,2,4‐triazoles in combination with different energetic moieties like amino, nitro, nitrimino, azido, and dinitromethylene groups is presented. The main goal is a comparative study on the influence of those energetic moieties on the structural and energetic properties. A complete characterization including IR, Raman, and multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and deliver insight into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, the detonation parameters were calculated by using the EXPLO5.05 program. Additionally, the impact as well as the friction sensitivities and the sensitivity against electrostatic discharge were determined. The potential application of the synthesized compounds as energetic material will be studied and evaluated by using the experimentally obtained values for the thermal decomposition, the sensitivity data, and the calculated performance characteristics.  相似文献   

10.
Reaction of the carbene precursor 9,10‐bis(N‐ethylimidazoliummethyl)anthracene hexafluorophosphate ( 1 ) and Ag2O yielded the dinuclear metallocyclophane ( 2 ) in high yield. The structures of 1 and 2 were determined by X‐ray crystallography.  相似文献   

11.
A series of phosphor(III)inanone ligands 4‐7 , linked by ethylene bridges between the nitrogen atoms of the heterocyclic rings, were synthesized by the reaction of the bis‐PCl derivative 3 with the appropriate trimethylsilylamines. The bis‐phosphor(V)inanone compounds 8‐11 were obtained by the oxidation of 4‐7 with hexafluoroacetone (HFA). Oxidation of 4 and 6 with tetrachloro‐orthobenzoquinone (TOB) gave the bis‐phosphor(V)inanones 12 and 13 . The reaction of 4‐6 with [Pt(COD)Cl2] led to the platinum complexes 14‐16 . All the σ3‐phosphorinanone compounds 4‐7 and the σ5‐phosphorinanone compounds 8‐10 , 12 and 13 exist as a mixture of two conformers, as indicated by two signals in the 31P‐NMR spectra. However, compounds 9 and 11 exist as single conformers, both display only one sharp singlet in the 31P‐NMR spectra. The Pt‐complexes 15 and 16 contain two conformers; one conformer of 16 could be isolated by crystallization. X‐ray crystal structure determinations for compounds 8 , 14 and 16 were conducted, revealing inversion symmetry for 8 and cis arrangement for 14 and 16 .  相似文献   

12.
The mercury(II) metal crown ether ( 2a ) was obtained in high yield by reaction of the carbene precursor 1,2‐bis[N‐(1‐naphthylmethylene)imidazoliumethoxy]benzene dihexafluorophosphate ( 1 ) and Hg(OAc)2. Addition of NaI to the acetone solution of 2a resulted in precipitation of pale yellow solid 2b . The structures of 2a and 2b were determined by single‐crystal X‐ray diffractometry. Both molecules display a helical conformation with a torsional cycle. The mercury atom in complex 2a is tricoordinated by two intramolecular carbene carbon atoms and an acetate oxygen atom. The mercury atom in complex 2b is tetracoordinated by two intramolecular carbene carbon atoms and two cis‐iodine atoms.  相似文献   

13.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

14.
Reactions of (NEt4)2[Re(CO)3Br3] with N‐heterocyclic thiols such as 2‐mercaptobenzimidazole (H2Sbenzim), 2‐mercaptothiazoline (HSthiaz), or 5‐mercapto‐1‐methyltetrazole (HSmetetraz) give rhenium(I) complexes of various compositions: (NEt4)[Re(CO)3Br2(H2Sbenzim)], [Re(CO)3(HSthiaz)3]Br, and (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2]. Corresponding reactions with 2‐mercaptopyridine (HSpy) and bis(2‐pyridine)diselenide [(Sepy)2] did not give defined products in reasonable yields, whereas [Re(CO)5Br] reacts with HSpy and (Sepy)2 with formation of [Re(CO)3(HSpy)3]Br and [Re2(CO)6(Sepy)2], respectively. All reactions were performed without the addition of a supporting base and the sulfur‐containing organic ligands are coordinated in their thione forms with the exception of Smetetraz in its μS‐bridging coordination mode in (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2], which can be regarded as thiolate. The bonding mode of the selenium containing ligands in the dimeric compound [Re2(CO)6(Sepy)2] (C–Se distance: 1.93 Å) can also best be described as selenolate. The products are stable on air at an ambient temperature. They were studied spectroscopically and by X‐ray diffraction.  相似文献   

15.
An N‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched ketones has been developed. This methodology provides a new approach to afford branched ketones, which are difficult to access through the hydroacylation of simple internal alkenes with aldehydes. This redox‐neutral and redox‐economical coupling is free from any oxidative or reductive additives as well as stoichiometric byproducts. These reactions convert both benzylic and aliphatic alcohols and alkynes, two basic feedstock chemicals, into various α‐branched ketones in a single chemical step.  相似文献   

16.
New [(N?,N,N?)ZrR2] dialkyl complexes (N?,N,N?=pyrrolyl‐pyridyl‐amido or indolyl‐pyridyl‐amido; R=Me or CH2Ph) have been synthesised and tested as pre‐catalysts for ethene and propene polymerisation in combination with different activators, such as B(C6F5)3, [Ph3C][B(C6F5)4], [HNMe2Ph][B(C6F5)4] or solid AlMe3‐depleted methylaluminoxane (DMAO). Polyethylene (Mw>2 MDa and Mw/Mn = 1.3–1.6) has been produced if pre‐catalysts were activated with 1000 equivalents of DMAO (based on Al) [activity >1000 kgPE (mol[Zr] h mol atm)?1] or by using a higher pre‐catalyst concentration and a mixture of [HNPhMe2][B(C6F5)4] (1 equiv) and AliBu2H (60 equiv). In the case of propene polymerisation, activity has been observed only if pre‐catalysts were treated with an excess of AliBu2H prior to addition of DMAO, which led to highly isotactic polypropylene ([mmmm]>95 %). Neutral pre‐catalysts and ion pairs derived from their activation have been characterised in solution by using advanced 1D and 2D NMR spectroscopy experiments. The detection and rationalisation of intercationic NOEs clearly showed the formation of dimeric species in which some pyrrolyl or indolyl π‐electron density of one unit is engaged in stabilising the metal centre of the other unit, which relegates the counterions in the second coordination sphere. The solid‐state structure of the dimeric indolyl‐pyridyl‐amidomethylzirconium derivative, determined by X‐ray diffraction studies, points toward a weak Zr???η3‐indolyl interaction. It can be hypothesised that the formation of dimeric cationic species hampers monomer coordination (especially of less reactive α‐olefins) and that addition of AliBu2H is crucial to split the homodimers.  相似文献   

17.
18.
The complex, bis[N‐6‐aminopyridyl‐N‐(1S)‐(+)‐10‐camphorsulfonylamino]palladium, Pd[(S)‐APCS]2, 1 , was prepared by reaction of 2‐[(1S)‐(+)‐10‐camphorsulfonamino]‐6‐aminopyridine with PdCl2 in THF. Complex 1 has been characterized by spectroscopic methods and its structure has been determined by X‐ray crystallography. Crystal data: space group C2, a= 16.082 (2), b = 17.104 (2), c = 13.051 (2)Å, β = 99.95 (1)°, V = 3535.9 (8) Å3, Z = 2 with final residuals R1 = 0.0491 and wR2 = 0.0944. Two independent molecules, (S,S)‐Pd[(S)‐APCS]2, 1a , and (R,R)‐Pd[(S)‐APCS]2, 1b , were found in each asymmetric unit, which exchange to each other via a series of nitrogen inversion and C‐C bond rotation. The inversion energy (ΔGc1) and the energy barrier (δGc2) were 11.5 ± 0.1 Kcal mol?1 at 246 K and 9.8 ± 0.1 Kcal mol?1 at 199 K, respectively, calculated by dynamic NMR data.  相似文献   

19.
A straightforward and scalable eight‐step synthesis of new N‐heterocyclic carbenes (NHCs) has been developed from inexpensive and readily available 2‐nitro‐m‐xylene. This process allows for the preparation of a novel class of NHCs coined ITent (“Tent” for “tentacular”) of which the well‐known IMes (N,N′‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene), IPr (N,N′‐bis(2,6‐di(2‐propyl)phenyl)imidazol‐2‐ylidene) and IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) NHCs are the simplest and already known congeners. The synthetic route was successfully used for the preparation of three members of the ITent family: IPent (N,N′‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene), IHept (N,N′‐bis(2,6‐di(4‐heptyl)phenyl)imidazol‐2‐ylidene) and INon (N,N′‐bis(2,6‐di(5‐nonyl)phenyl)imidazol‐2‐ylidene). The electronic and steric properties of each NHC were studied through the preparation of both nickel and palladium complexes. Finally the effect of these new ITent ligands in Pd‐catalyzed Suzuki–Miyaura and Buchwald–Hartwig cross‐couplings was investigated.  相似文献   

20.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号