首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reflection electron energy loss spectroscopy (REELS) has been used to study the optical and electronic properties of semi-infinite solid samples, aided by a theoretical model of the interaction between electrons and a solid. However, REELS has not been used to its full capacity in studying nanomaterial samples because of the difficulty in modeling the electron interaction with a layered nanostructure. In this study, we present a numerical calculation result on the spatially varying inelastic mean free path for a sample comprising an Fe layer of varying thickness on an Si substrate. Furthermore, a Monte Carlo model for electron interaction with this Fe-Si layered structure sample is built based on this inelastic scattering cross section and used to reproduce the REELS spectra of Fe-Si layered structures. The simulated spectra of the sample with varying Fe layer thickness on top of a Si substrate were compared with the experimental spectra. This comparison clearly identifies that the Fe layer remaining on top of the experimental Si substrate after Ar+ beam sputtering is in the form of a homogeneous mixed layer, where the Fe/Si interface excitation is absent in the experimental spectra owing to pulverization of the Fe/Si interface during the Ar+ sputtering process.  相似文献   

2.
Target factor analysis (TFA) of a series of angle‐resolved reflection electron energy loss spectra (REELS) was recently demonstrated to be a useful method to determine bulk energy loss functions (ELFs), which by the TFA are separated from the surface‐loss structures of REELS. The dielectric function is then readily derived by Kramers–Kronig analysis of the ELF. The advantage of the method compared with other methods, which are also based on the analysis of REELS, is that the condition of the outermost surface region is unimportant because the excitations that occur there are removed by the TFA and ideally a pure bulk component is determined. Our method is thus particularly useful for determining the ELF from compound materials that are hard to clean without modifying the outermost atomic layers. In this paper, the robustness of the method was studied by applying it to three GaAs samples with different surface compositions caused by different surface cleaning methods. The results showed that when electrons of energy 3000–4500 eV were used, the resulting bulk ELFs were essentially identical except for small differences for the sample that had the largest thickness of the modified surface layer. It is concluded that this is a useful method, provided that the thickness of the modified layer is kept to a minimum by using shallow angle sputtering and by using REELS electrons at a sufficiently high energy that a major part of the electron trajectories are at a depth larger than the thickness of the modified surface layer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A new analysis of reflection electron energy‐loss spectroscopy (REELS) spectra is presented. Assuming inelastic scattering in the bulk to be quantitatively understood, this method provides the distribution of energy losses in a single surface excitation in absolute units without the use of any fitting parameters. For this purpose, REELS spectra are decomposed into contributions corresponding to surface and volume excitations in two steps: first the contribution of multiple volume excitations is eliminated from the spectra and subsequently the distribution of energy losses in a single surface scattering event is retrieved. This decomposition is possible if surface and bulk excitations are uncorrelated, a condition that is fulfilled for medium‐energy electrons because the thickness of the surface scattering layer is small compared with the electron elastic mean free path. The developed method is successfully applied to REELS spectra of several materials. The resulting distributions of energy losses in an individual surface excitation are in good agreement with theory. In particular, the so‐called begrenzungs effect, i.e. the reduction of the intensity of bulk losses due to coupling with surface excitations near the boundary of a solid‐state plasma, becomes clearly observable in this way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A method of estimation is proposed for determining the effective depth of surface excitation. For this, the effective differential inverse inelastic mean free path (DIIMFP) is presumed to be represented as a linear combination of theoretical DIIMFPs for surface and bulk excitation, which are derived by the use of optical dielectric constants. The effective DIIMFP in the approach is derived by a reflected electron energy‐loss spectroscopy analysis based on the extended Landau approach. The present analysis for 1 kV electrons has led to a simple estimation of the effective depth for surface excitations (~14.5 Å for Al and ~21 Å for Ag), agreeing well with an estimation given by υ/ω s, where υ and ω s are the velocity of the primary electrons and the average surface plasmon frequency, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Polytetrafluoroethylene (PTFE) composite coatings doped copper acetate and polyurethane (PU) were prepared on rubber substrate by low‐energy electron beam dispersion technique. The effects of dopant and glow discharge treatment on the surface morphology, structure and tribological properties of the coatings were investigated. The results showed that Cu–PTFE composite coatings form uniform surface and dense column structure with spherical aggregations under glow discharge treatment. PU coating shows the large size of protuberance structure but PU–PTFE coating presents spherical structure. Both of the coatings become relative dense and smooth after discharge treatment, and Cu–PU–PTFE composite coatings possess a smoother surface and lower polar component of surface energy. Cu doping weakens the crystallinity and ordering degree of composite coatings, but glow discharge increases the ordering degree and branched structure of C―H groups. Friction experiment indicated that Cu fails to improve the wear resistance of PTFE coatings but glow discharge treatment can do it. Cu–PU–PTFE coatings after discharge treatment have the higher wear resistance and lower coefficient of friction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Reflection electron energy loss spectroscopy (REELS) spectra were measured for seven insulating organic compounds (DNA, Irganox 1010, Kapton, polyethylene [PE], poly(methyl methacrylate) [PMMA], polystyrene [PS] and polytetrafluoroethylene [PTFE]). Optical constants and energy band gaps were extracted from the measured REELS spectra after elimination of multiple electron scattering via a deconvolution and fitting the normalised single scattering energy loss spectra to Drude and Drude–Lindhard model dielectric functions, constrained by the Kramers–Kronig sum and f-sum rules. Satisfactory agreement is found for those optical constants for which literature data exists. For PTFE, the observed features in the optical data correspond to its electronic structure.  相似文献   

8.
A theoretical method to determine the so‐called surface excitation parameter (SEP) is presented. This method is based on the modelling of reflection‐electron‐energy‐loss spectroscopy and more particularly on the analysis of energy‐differential inelastic electron scattering cross sections calculated within the model. The SEP is extracted from theoretical cross‐section spectrum by calculating the ratio between the surface loss component of the spectrum and the elastic peak intensity. The calculations have been performed entirely with the dielectric function, using the software QUEELS (Quantitative analysis of Electron Energy Losses at Surfaces) recently developed by Yubero and Tougaard [Surf. Interface Anal. 2004; 36 : 824]. The angular distribution of SEP is calculated for angles between 10° and about 70° for aluminium and silicon. We propose also an extension of the method for materials (e.g. copper) that do not present clear surface and volume plasmons. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Effective energy‐loss functions were derived from the reflection electron energy‐loss spectroscopy (REELS) spectra of Ag by an extended Landau approach. The effective energy‐loss functions obtained are close to the surface energy‐loss function in the low‐energy‐loss region, but tend to be closer to the bulk energy‐loss function in the higher energy‐loss region for higher primary energy. The REELS spectra incorporating the effective energy‐loss function are also reproduced in a Monte‐Carlo simulation model and confirm that the simulation reproduces the experimental REELS spectra with considerable success. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Electron energy distributions have been determined from thin-target Bremsstrahlung for many years. For thick-target Bremsstrahlung however, even the simple diagnostic that immediately gives the distribution from the second derivative of the emissivity has been established only recently. For cases when the underlying assumptions are unjustified, further deconvolutions are proposed: a matrix inversion method involving a functions basis, and an iterative method which is more general and stable. Both methods could also be applied to thin-target Bremsstrahlung.  相似文献   

11.
A qualitative analysis tool (LiPilot) for identifying phospholipids (PLs), including lysophospholipids (LPLs), from biological mixtures is introduced. The developed algorithm utilizes raw data obtained from nanoflow liquid chromatography–electrospray ionization–tandem mass spectrometry experiments of lipid mixture samples including retention time and m/z values of precursor and fragment ions from data‐dependent, collision‐induced dissociation. Library files based on typical fragmentation patterns of PLs generated with an LTQ‐Velos ion trap mass spectrometer are used to identify PL or LPL species by comparing experimental fragment ions with typical fragment ions in the library file. Identification is aided by calculating a confidence score developed in our laboratory to maximize identification efficiency. Analysis includes the influence of total ion intensities of matched and unmatched fragment ions, the difference in m/z values between observed and theoretical fragment ions, and a weighting factor used to differentiate regioisomers through data filtration. The present study focused on targeted identification of particular PL classes. The identification software was evaluated using a mixture of 24 PL and LPL standards. The software was further tested with a human urinary PL mixture sample, with 93 PLs and 22 LPLs identified. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The ground‐state band structure of polydiacetylenes is theoretically studied with the extensional Su–Schriffer–Heeger model supplemented by electron–electron interactions. The results show the following. First, the interval of valence bands (conduction bands) increases because of the electron–electron interactions. Second, the effect of the on‐site Coulomb energy (U) is different from that of the nearest neighbor Coulomb repulsion (V); the competition between U and V shows that U makes the bandwidth narrower and the gap broader, whereas V makes the bandwidth broader and the gap narrower. There is a critical value of U/V. Third, the whole band width (Ew) decreases when the U/V ratio is less than 1.0 and increases when the U/V ratio is greater than 1.0 at V = 2.0 eV. Thus, the ground‐state band structure is sensitive to the U/V ratio. The results also show that electron–electron interactions can play an important role in the band structure of polydiacetylenes. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1656–1661, 2000  相似文献   

13.
An expression for the evaluation of electron–electron coalescence density as a functional of the density for any electron system is proposed. The formula, clarifies previously advanced upper bounds for this quantity and provides a method to independently estimate the system‐averaged on‐top exchange–correlation hole. The relationship with the on‐top pair density shows that producing the true electron–electron coalescense should be considered as a leading physical requirement for trial wave functions in any energy minimization scheme. © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

14.
The Hartree–Fock–Bogoliubov (HFB) method, dealing with Bogoliubov orbitals, which consist of particle and hole part, can provide states with pair correlations associated with Cooper pairs. The dimension of HFB Fock matrices can be reduced by restrictions of spin states of Bogoliubov orbitals similarly to ordinary Hartree–Fock (HF) equations such as restricted HF (RHF), unrestricted HF (UHF), and generalized HF (GHF). However, there are few studies of moderate restricted HFB equations such as UHF‐based HFB equations. In this article, formulation and calculations of restricted HFB equations are described. The solutions of general and restricted HFB equations are compared. Pair correlations taking account of restricted and general HFB equations are discussed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

15.
Ti–Si–B–C–N film was deposited by DC magnetron sputtering at different argon and nitrogen ratios such as N2/Ar = 1 : 5, 2 : 4, 3 : 3, 4 : 1 and 5 : 0. The formation of TiN and TiB phases was observed because of incorporation of nitrogen. The hardness, modulus, microstructure, structure and bond formation with different nitrogen contents during the deposition were studied by nanoindentation, scanning electron microscope, X‐ray diffraction and X‐ray photoelectron spectroscopy, respectively. The oxidation kinetics of Ti–Si–B–C–N was investigated. The nitrogen incorporation during deposition influences different properties of the coating. Hardness and modulus decreased, and microstructure showed very fine grain presence, and film changes to fully amorphous because of incorporation of nitrogen in the film. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Chlorophylls and their related compounds prominently feature a Mg2+ ion in the center of a porphyrine, with an intermolecular fifth coordination usually observed to place the ion out of the macrocyclic plane. Herein, we assess the role of a potential intramolecular η2–(C = C)Mg interaction and compare it to the intermolecular coordination from the Hystidine groupt to Mg2+ for Bacterichlorophyll–a (Bchl–a), the main photosynthetic pigment in the Fenna–Matthews–Olson complex present in green and purple bacteria. The influence of this fifth coordination on the UV‐Vis spectroscopy (CAM‐B3LYP/cc‐pVDZ), and the concomitant change in geometry around Mg in Bchl–a from planar to pyramidal is assessed by the quantum theory of atoms in molecules based non–covalent interactions scheme and through energetic analysis via natural bond orbital population methods at the M06‐2X/cc‐pVDZ and compared to the reference multi–hapto compound, magnesocene, Cp2Mg.  相似文献   

17.
Donor–acceptor complexes of silicon halides with ammonia, pyridine, and 2,2′bipyridine SiX4 · nD (X = F, Cl, Br) have been studied at the B3LYP/pVDZ level of theory. Energies of the donor–acceptor bond have been estimated taking into account the reorganization energy of the donor and acceptor fragments and basis set superposition error correction. Despite of the very low (or even negative) dissociation energy of SiX4 · nD into free fragments, the Si–N bonding in all complexes is rather strong (75–220 kJ mol?1). It is the reorganization energy of the acceptor SiX4 (75–280 kJ mol?1) that governs the dissociation energy of the complex. Thus, in contrast to the complexes of group 13 halides, the reorganization effects are crucial for the complexes of group 14 halides, and their neglecting leads to erroneous conclusions about the strength of the donor–acceptor bond in these systems. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

18.
We are reporting ab initio and density functional theory (DFT) calculations for the phenol O–H bond dissociation energy in the gas phase and in phenol–water clusters. We have tested a series of recently proposed functionals and verified that DFT systematically underestimates the O–H bond dissociation energy of phenol. However, O–H bond dissociation energies in water clusters are in reasonable agreement with experimental data for phenol in solution. We have evaluated electronic difference densities in phenol–water, phenoxy–water, and water, and we are suggesting that the representation of this quantity gives an interesting picture of the electronic density rearrangement induced by hydrogen bond interactions in phenol–water clusters. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

19.
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly‐spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution‐based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.  相似文献   

20.
We recently presented electron spin resonance spectra of poly(acrylonitrile–butadiene–styrene) (ABS) doped with 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD) as spin probes. The spectra were measured in three types of ABS that differed in their butadiene contents and methods of preparation. Results for the ABS polymers were evaluated by comparison with similar studies on the homopolymers polybutadiene (PB) and polystyrene (PS) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Only one spectral component was detected for 10DND in PB, PS, SAN, and SB. In contrast, two spectral components differing in their dynamic properties were detected in the ABS samples and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The presence of two spectral components was taken as an indication of microphase separation. In this study, we present details on the dynamics and microphase separation by simulating spectra of 10DND in ABS, PB, PS, and SAN. The simulations are based on a dynamic model defined by the components of the rotational diffusion tensor and the diffusion tilt angle between the symmetry axis of the rotational diffusion tensor and the direction of the nitrogen 2pz atomic orbital. The jump diffusion model led to good agreement with experimental spectra. In this model, the spin probe has a fixed orientation for a given time and then jumps instantaneously to a new orientation. The temperature variation of the rotational correlation time in PB and PS consisted of two dynamic regimes, with different activation energies. The transition temperature at which the change in dynamics occurs (Ttr) is 380 K for PS and 205 K for PB, essentially the same as the corresponding glass‐transition temperatures measured by differential scanning calorimetry. We suggest that Ttr is a better indicator of the glass transition than the temperature at which the total spectral width is 50 G, especially for large probes. The simulation program allowed the determination of the relative intensities of the fast and slow spectral components as a function of temperature; this information was used to clarify the redistribution of the probe above the glass transition of the SAN‐rich component in ABS systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 424–433, 2002; DOI 10.1002/polb.10110  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号