首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
Atomic chemisorption of hydrogen and oxygen on the Ni(100) surface has been studied using an Effective Core Potential (ECP) approach described in a previous paper. Clusters of up to 50 nickel atoms have been used to model the surface. The computed chemisorption energies are 62 kcal/mol (exp. 63 kcal/mol) for hydrogen and 106 kcal/mol (exp. 115–130 kcal/mol) for oxygen. Correlating the adsorbate and the cluster-adsorbate bonds is extremely important for obtaining accceptable results, particularly for oxygen. Reasonable convergence of chemisorption energies is obtained with 40–50 cluster atoms for both hydrogen and oxygen. For hydrogen the addition of a third cluster layer stabilizes the results considerably. Both hydrogen and oxygen are adsorbed at (or close to) the four-fold hollow site. The calculated barriers for surface migration are also in good agreement with the experimental estimates. The calculated equilibrium heights above the surface are on the other hand too high compared with experiments. This disagreement is believed to be due to core-valence correlation effects, which are not incorporated in the present ECP. The cluster convergence for the height above the surface is much slower than for the chemisorption energy.  相似文献   

2.
A practical and accurate semiclassical method for calculating the tunneling splitting of the ground state in polyatomic molecules is presented based on a recent version of the instanton theory [J. Chem. Phys. 115, 6881 (2001)]. The method uses ab initio quantum chemical data for the potential energy surface without any concomitant extrapolation and requires only a small number of ab initio data points to get convergence even for large molecules. This enables one to use an advanced level of electronic structure theory and achieve a high accuracy of the result. The method is applied to the 9-atomic malonaldehyde molecule by making use of the potential energy surface at the level of CCSD(T) with the hybrid basis set of aug-cc-pVTZ (for oxygen atoms and the transferred hydrogen atom) and cc-pVTZ (for other atoms).  相似文献   

3.
Anion substitution effects on the structure and energy of zinc chalcogenides were studied with the semiempirical molecular orbital method MSINDO. Cyclic clusters of different sizes were chosen as model systems. The convergence of the bulk properties of the perfect clusters with increasing cluster size was tested. Single and multiple substitution of oxygen atoms in zinc oxide by sulfur and of sulfur atoms in zinc sulfide by oxygen served to determine the energetics of substitution for these two cases. It was found that the substitution of oxygen by sulfur in ZnO is easier than the substitution of sulfur by oxygen in ZnS in agreement with experimental results. The interaction between two oxygen atoms vs. two selenium atoms in zinc sulfide was investigated. Oscillations of the cluster energy in dependence of the distance between the two doping atoms were observed. These are explained by the relative sites of the doping atoms in the crystal lattice. The magnitude of the oscillations is smaller in ZnS:Se than in ZnS:O, because the difference between the anion radii of S2- and Se2- is smaller than between S2- and O2-. This is also reflected in the band gap.  相似文献   

4.
Two different perturbation series (the polarization expansion and a united-atom expansion) of the ground state energy of the delta-function model for one-electron diatoms are studied and the radii of convergence are determined. For both expansions the singularity in the energy which limits the radius of convergence is a branch point with exponent one-half. The physical significance of the branch point is that for particular values of the perturbation parameter, two different energy eigenvalues coalesce. The positions of the branch points are computed as a function of the internuclear separation R. For all values of R, both series converge for all physical values of the perturbation parameters. A lower bound to the radius of convergence of the polarization expansion has been computed previously by Claverie. It is proved in the present paper that the lower bound calculation is in fact an exact determination of the radius of convergence. The results of the model study are applied to real one-electron diatoms to suggest the possible location of a branch point singularity in the energy of the ground state.  相似文献   

5.
《Chemical physics》1987,112(3):301-305
The influence of electric field gradients on the radius of convergence of the energy expansion is investigated using an analysis based on N-variable rational approximation for the power series. The influence of the field gradient on the energy of LiH in a one-dimensional electric field is found to be greatest at small internuclear distances. The radius of convergence is smallest at large internuclear distances. The implications of these results for finite field and test charge calculations are discussed.  相似文献   

6.
在 973- 1 473K温度范围内 ,测定了铌与Ca CaO和与Mg MgO共存时铌金属中氧的平衡浓度 .得出并讨论了铌中的氧溶解反应的Gibbs自由能表达式和氧分压 温度 成分 (p t x)关系表达式 .  相似文献   

7.
The authors present an integrated approach to "alchemical" free energy simulation, which permits efficient calculation of the free energy difference on rugged energy surface. The method is designed to obtain efficient canonical sampling for rapid free energy convergence. The proposal is motivated by the insight that both the exchange efficiency in the presently designed dual-topology alchemical Hamiltonian replica exchange method (HREM), and the confidence of the free energy determination using the overlap histogramming method, depend on the same criterion, viz., the overlaps of the energy difference histograms between all pairs of neighboring states. Hence, integrating these two techniques can produce a joint solution to the problems of the free energy convergence and conformational sampling in the free energy simulations, in which lambda parameter plays two roles to simultaneously facilitate the conformational sampling and improve the phase space overlap for the free energy determination. Specifically, in contrast with other alchemical HREM based free energy simulation methods, the dual-topology approach can ensure robust conformational sampling. Due to these features (a synergistic solution to the free energy convergence and canonical sampling, and the improvement of the sampling efficiency with the dual-topology treatment), the present approach, as demonstrated in the model studies of the authors, is highly efficient in obtaining accurate free energy differences, especially for the systems with rough energy landscapes.  相似文献   

8.
《Chemical physics letters》1987,138(4):291-295
Two direct-search approaches to obtain the SCF solution for a true maximum of the self-repulsion energy with energy-localized orbitals are proposed: an approach based on the level-shifted second-order method and another approach based on scaling of the orbital transformation vector to obtain an approximate solution for a true maximum. The latter is more advantageous to obtain convergence for large systems. Both methods involve calculation of the exact self-repulsion energy hypersurface in the controlling parameter space via a set of unitary transformations and selection of the unitary transformation which increases the self-repulsion energy. These approaches are found to converge efficiently even when started from a point far from convergence.  相似文献   

9.
The effects of oxygen vacancies and zinc interstitials on the structure and energy of zinc oxide were studied with the semiempirical MO method MSINDO. Cyclic clusters were chosen as model systems. Single and multiple removal of oxygen atoms and zinc interstitials in zinc oxide served to determine the defect formation energy and the band gap. The interaction between two and three oxygen vacancies was investigated. The vacancies cause a decrease of the band gap, which originates from an occupied defect level. This is also found for zinc interstitials under zinc rich conditions. The defect formation energy of such zinc interstitials is found to be lower than that of oxygen vacancies at 0 K but decreases for oxygen vacancies and increases for zinc interstitials with increasing temperature.  相似文献   

10.
湿法脱硫中亚硫酸盐非催化氧化本征动力学   总被引:1,自引:0,他引:1  
汪黎东  赵毅  李蔷薇  陈传敏 《化学学报》2007,65(22):2618-2622
亚硫酸盐的氧化是湿法烟气脱硫工艺中的重要过程. 利用间歇式反应装置, 研究了亚硫酸盐非催化氧化的本征反应动力学. 结果表明, 该反应分为两个阶段进行, 即富氧区的快速反应和贫氧区的慢速反应. 在富氧区, 亚硫酸盐和溶解氧的分级数分别为1.0和1.0, 反应的表观活化能为49.3 kJ•mol-1; 在贫氧区, 亚硫酸盐和溶解氧的分级数分别为2.0和0, 反应的表观活化能为122.6 kJ•mol-1. 对反应的机理进行了预测, 结果与实验现象有较好的吻合.  相似文献   

11.
 The convergence of chemisorption energy for hydrogen and oxygen on gold clusters is studied. Two theoretical approaches have been employed; wavefunction methods at the self-consistent-field second–order M?ller–Plesset level and density functional theory and the two methods are compared. Relativistic effective core potentials exploited in the former approach were developed in this work. Received: 25 October 1999 / Accepted: 21 February 2001 / Published online: 11 October 2001  相似文献   

12.
汪黎东  赵毅  马永亮  郝吉明 《化学学报》2008,66(21):2336-2340
亚硫酸盐的氧化是湿法烟气脱硫工艺中的重要过程. 利用间歇式反应装置, 研究了苯酚抑制条件下亚硫酸盐氧化的本征反应动力学. 结果表明, 该复杂的反应过程分两个阶段进行, 即富氧区的快速反应和贫氧区的慢速反应. 在富氧区, 苯酚、亚硫酸盐和溶解氧的分级数分别为-0.5, 1.0和2.0, 反应的表观活化能为99.2 kJ•mol-1; 在贫氧区, 苯酚、亚硫酸盐和溶解氧的分级数分别为-0.5, 1.5和0, 反应的表观活化能为 129.7 kJ•mol-1. 结合实验结果, 对苯酚抑制条件下亚硫酸盐氧化的宏观反应动力学过程进行了推断.  相似文献   

13.
The interaction of oxygen molecules with a fullerene surface has been studied using high resolution electron energy loss spectroscopy and temperature programmed desorption. Vibrational excitation of the adsorbed oxygen is observed at 190 meV, an energy value comparable with that for molecular oxygen in the gas phase. We take this to indicate physisorption of molecular oxygen on the C(60) surface. Thermal desorption results also show that the bonding of oxygen molecules to the C(60) overlayer is comparable to that on a graphite surface. A detailed study of the energy dependence of the vibrational excitation reveals an inelastic electron resonance scattering process. The angular dependence of the resonant vibrational excitation exhibits features distinctively different from those for molecular oxygen physisorbed on the related graphite surface, at a comparable coverage. One possible reason is that the corrugated surface potential, due to the curvature of the C(60) molecules, promotes the preferential ordering of the physisorbed oxygen molecules perpendicular to the surface plane of the C(60) overlayer.  相似文献   

14.
We have carried out a hybrid density functional study of mechanisms for oxidative dehydrogenation of propane on the (010) surface of V2O5. The surface was modeled using both vanadium oxide clusters and a periodic slab. We have investigated a Mars-van Krevelen mechanism that involves stepwise adsorption of the propane at an oxygen site followed by desorption of a water molecule and propene, and subsequent adsorption of an oxygen molecule to complete the catalytic cycle. The potential energy surface is found to have large barriers, which are lowered somewhat when the possibility of a triplet state is considered. The barriers for propane adsorption and propene elimination are 45-60 kcal/mol. The highest energy on the potential energy surface at the B3LYP/6-31G* level of theory is about 80 kcal/mol above the energy of the reactants and corresponds to formation of an oxygen vacancy after water elimination. Subsequent addition of an oxygen molecule to fill the vacancy is predicted to be energetically downhill. The reactions of propane at a bridging oxygen site and at a vanadyl site have similar energetics. The key results of the cluster calculations are confirmed by periodic calculations. Factors that may lower the barriers on the potential energy surface, including the interaction of vanadium oxide clusters with a support material and a concerted reaction with O2, are discussed.  相似文献   

15.
The effect of hydrogen on the adsorption and dissociation of the oxygen molecule on a TiO2 anatase (001) surface is studied by first‐principles calculations coupled with the nudged elastic band (NEB) method. Hydrogen adatoms on the surface can increase the absolute value of the adsorption energy of the oxygen molecule. A single H adatom on an anatase (001) surface can lower dramatically the dissociation barrier of the oxygen molecule. The adsorption energy of an O2 molecule is high enough to break the O?O bond. The system energy is lowered after dissociation. If two H adatoms are together on the surface, an oxygen molecule can be also strongly adsorbed, and the adsorption energy is high enough to break the O?O bond. However, the system energy increases after dissociation. Because dissociation of the oxygen molecule on a hydrogenated anatase (001) surface is more efficient, and the oxygen adatoms on the anatase surface can be used to oxidize other adsorbed toxic small gas molecules, hydrogenated anatase is a promising catalyst candidate.  相似文献   

16.
Highly efficient electron stimulated desorption of O+ from gadolinia-doped ceria (GDC) surfaces annealed at 850 K in ultrahigh vacuum is observed and investigated. O+ desorption has a major threshold of approximately 40 eV and an intrinsic kinetic energy of approximately 5.6 eV. Since the threshold energy is close to Ce 5s and Gd 5s core levels, Auger decay of core holes is likely associated with O+ desorption from sites related to oxygen vacancies. The interactions of water and molecular oxygen with GDC surfaces result in a decrease in O+ desorption, suggesting that water and oxygen molecules adsorb mainly to oxygen vacancies. The dependence of O+ kinetic energies on the incident electron energy and temperature reveals surface charging as a result of electron trapping, hole trapping, and electron-hole recombination. The activation energy for surface charge dissipation is found to be 0.43 eV, close to the activation energy for ionic conduction (0.47 to 0.6 eV) in the same material.  相似文献   

17.
反相液相色谱中同系物收敛的热力学表征   总被引:4,自引:0,他引:4  
张静  马致考  耿信笃 《化学学报》1999,57(9):967-973
以液相色谱中的溶质计量置换保留模型(SDM-R)为理论基础,从热力学角度进一步对反相液相色谱中同系物的收敛性进行了研究。建立了溶质平均收敛点坐标的计算方程,并从自由能变的角度表征了收敛点坐标的物理意义,阐明了收敛点的纵坐标相等的原因是溶质在收敛点处的自由能变为零。浓度收敛点的横坐标是1mol纯溶剂的解吸附自由能;而碳数收敛点的横坐标为当流动相中有机溶剂的浓度为纯有机溶剂浓度的十分之一时的同系物端基的保留自由能的负值。并以实验数据对该方程进行了验证,两者符合程度甚佳。  相似文献   

18.
The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.  相似文献   

19.
The effect of homogeneous electric fields on the adsorption energies of atomic and molecular oxygen and the dissociation activation energy of molecular oxygen on Pt(111) were studied by density functional theory (DFT). Positive electric fields, corresponding to positively charged surfaces, reduce the adsorption energies of the oxygen species on Pt(111), whereas negative fields increase the adsorption energies. The magnitude of the energy change for a given field is primarily determined by the static surface dipole moment induced by adsorption. On 10-atom Pt(111) clusters, the adsorption energy of atomic oxygen decreased by ca. 0.25 eV in the presence of a 0.51 V/A (0.01 au) electric field. This energy change, however, is heavily dependent on the number of atoms in the Pt(111) cluster, as the static dipole moment decreases with cluster size. Similar calculations with periodic slab models revealed a change in energy smaller by roughly an order of magnitude relative to the 10-atom cluster results. Calculations with adsorbed molecular oxygen and its transition state for dissociation showed similar behavior. Additionally, substrate relaxation in periodic slab models lowers the static dipole moment and, therefore, the effect of electric field on binding energy. The results presented in this paper indicate that the electrostatic effect of electric fields at fuel cell cathodes may be sufficiently large to influence the oxygen reduction reaction kinetics by increasing the activation energy for dissociation.  相似文献   

20.
We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two‐electron reduction of oxygen occurs at low potentials, whereas four‐electron reduction is key for energy‐transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four‐electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme‐modified electrode for energy‐transformation devices is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号