首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of intramolecular gas‐phase reactions of N‐(2‐X‐5‐nitrophenyl)‐N‐methylacetamide carbanions (X=H, F, Cl) has been studied using negative ion electrospray mass spectrometry ((?)ESI‐MS) technique and modelled computationally. It was proven that all three anions form cyclic σH adducts, which undergo elimination of water. In the case of X=F, formation of the σF adduct, leading to SNAr reaction, was a competing process. This is the first proof that also in the gas phase formation of σH adduct proceeds faster than σX adduct and only when X=F, rates of these two processes are comparable. The experimental results are in full agreement with quantum chemical calculations.  相似文献   

2.
The reflected shock tube technique with multipass absorption spectrometric detection of OH‐radicals at 308 nm, corresponding to a total path length of 1.749 m, has been used to study the reaction H2O + M → H + OH + M between 2196 and 2792 K using 0.3, 0.5, and 1% H2O, diluted in Kr. As a result of the increased sensitivity for OH‐radical detection, the existing database for this reaction could be extended downward by ~500 K. Combining the present work with that of Homer and Hurle, the composite rate expression for water dissociation in either Ar or Kr bath gas is k1,Ar(or Kr) = (2.43 ± 0.57) × 10?10 exp(?47117 ± 633 K/T) cm3 molecule?1 s?1 over the T‐range of 2196–3290 K. Applying the Troe factorization method to data for both forward and reverse reactions, the rate behavior could be expressed to within <±18% over the T‐range, 300–3400 K, by the three‐parameter expression k1,Ar = 1.007 × 104 T?3.322 exp(?60782 K/T) cm3 molecule?1 s?1 A large enhancement due to H2O with H2O collisional activation has been noted previously, and both absolute and relative data have been considered allowing us to suggest k1, H2 O = 1.671 × 102 T?2.440 exp(?60475 K/T) cm3 molecule?1 s?1 for the rate constants with H2O bath gas over the T‐range, 300–3400 K. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 211–219, 2006  相似文献   

3.
Phthalate esters are additives used in polyvinylchloride and are found as contaminants in many food products. An isotope dilution mass spectrometry technique has been developed for accurate analysis of 16 phthalate esters in Chinese spirits by adopting the 16 corresponding isotope‐labeled phthalate esters. The ethanol in the spirit sample was first removed by heating with a water bath at 100°C with a stream of nitrogen, after which the residue was extracted with n‐hexane twice. The phthalates collected were identified and quantified by gas chromatography with tandem mass spectrometry in multiple reaction monitoring mode. The spiking recoveries of 16 analytes ranged from 94.3 to 105.3% with relative standard deviation values of <6.5%. The detection limits for 16 analytes were <10.0 ng/g. The expanded relative uncertainties were from 3.0 to 14%. A survey was performed on Chinese spirits from the market. Six of the nine analyzed samples were contaminated by phthalates. Di‐n‐butyl phthalate and di‐2‐ethylhexyl phthalate showed higher detection frequency and concentrations. This isotope dilution gas chromatography with tandem mass spectrometry method is simple, rapid, accurate, and highly sensitive, which qualifies as a candidate reference method for the determination of phthalates in spirits.  相似文献   

4.
Generally, dynamic secondary ion mass spectrometry (SIMS) has been mainly used as one of the most powerful tools for inorganic mass analysis. On the other hand, an Ar gas cluster ion beam (GCIB) has been developed and spread as a processing tool for surface flattening and also a projectile for time‐of‐flight (ToF) SIMS. In this study, we newly introduced an Ar‐GCIB as a primary ion source to a commercially available dynamic SIMS apparatus, and investigated mass spectra of amino acid films (such as Arginine and Glycine) and polymer films (Polyethylene: PE and Polypropylene: PP) as organic model samples. As a result, each characteristic fragment peak indicating the original molecular organic structure was observed in the acquired mass spectra. In addition, their own molecular ions of the amino acids were also clearly observed. Mass spectra of PE/PP blended‐polymer films acquired using Ar‐GCIB‐dynamic SIMS could be identified between pure PE and PE:PP = 1:3 mixture by applying principal component analysis (PCA).  相似文献   

5.
The root of Dictamnus dasycarpus Turcz ., also known as Cortex Dictamni, is a Chinese herbal medicine that has been commonly used in the treatment of inflammation, microbial infection, cancer, and other diseases in China for thousands of years. Recently, the essential oil of Cortex Dictamni has been widely studied, and a large number of volatile constituents have been discovered. However, the research of the essential oil of Cortex Dictamni in vivo remains unknown, especially the constituents absorbed into blood after oral administration. Hence, a sensitive and rapid method using gas chromatography with mass spectrometry combined with MassHunter software and the National Institute of Standards and Technology 2014 database was used to investigate the absorbed components in rat serum after oral administration of the essential oil of Cortex Dictamni. With the established method, a total of 36 compounds were screened and identified in the essential oil of Cortex Dictamni based on the mass spectrometry data and compound database. Among them, eight compounds, elemol, thymol methyl ether, β‐eudesmol, β‐cyclocostunolid, guaiazulene, trans‐4‐hydroxystilbene, ethyl oleate, and monoelaidin, were tentatively characterized in rat serum. This work demonstrated that the established method proved to be a powerful technique for rapid, simple, reliable, and automated identification of bioactive components of herbal medicine.  相似文献   

6.
When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip‐APTSI (µAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas‐phase ionization. To evaluate the performance of the described µAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The µAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The µAPTSI produces ESI‐like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in‐source fragmentation was also observed. Unlike ESI, however, the µAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The µAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Although gas sorption in glassy polymers is a well‐studied phenomenon, no general microscopical model is developed which is able to describe the gas sorption in a wide temperature range using only characteristics of polymer and gas molecule. In this work, sorption isotherms and desorption kinetics of O2, Ar, and N2 for glassy poly(ethyl methacrylate) have been measured in the temperature range from 160 to 308 K. To describe both the phenomena, the model is developed which postulates that, in the frozen structure of glassy polymer, any cavities between macromolecules are the sorption sites for small molecules. The cavities of small size can expand elastically to accommodate a gas molecule. The sorption sites are considered to be the potential wells and their depths are distributed according to Gaussian law. The concentration of sorption sites, their mean depth and depths dispersion, and the frequency of molecules oscillations in the sorption sites are the only parameters which determine both the gas transport and sorption. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 288–296  相似文献   

8.
《中国化学会会志》2017,64(1):25-35
We present here a physico‐mathematical picture for explaining the unexpectedly large decoherence cross‐section (almost 10 times larger than its gas‐kinematic cross‐section) recently observed by Ureña and coworkers in their scattering experiment involving a coherent NO beam with Ar gas. The present topological picture consists of a stereographic projection and the cusp catastrophe theory of Thom, and we find that this model enables us to clarify the origin of the collisional decoherence. From the view of the stereographic projection, we can naturally introduce the wave property originating from the singular point at the “North pole” on the circumference S1 coordinate corresponding to a critical point for the collisional decoherence (condition 1 ). This picture also predicts the sudden changes of wave‐phase collapse due to network interaction in the many‐body system (condition 2 ). Thus it is hoped that the model proposed by Ureña et al. based on the dipole‐induced dipole interaction in the NO + Ar system could be modified through this picture by including interactions with many Ar atoms in the environment. One way to fill the gap between the single‐pair interaction picture and the multiple interaction one would be to employ theoretical calculations by use of the density matrix theory with and without adding the second Ar atom to the NO –Ar system. The cusp catastrophe theory reinforces the necessity of some cooperative network interaction between the coherent NO molecule and many neighboring Ar atoms and provides a qualitative scenario in which the whole system leads to a sudden change of the collisional decoherence of NO as a function of the control parameters (a, b ). At this stage, the present physico‐mathematical picture cannot give any specific values of the decoherence distance by the theory itself, but it clearly provides us a new topological concept for clarifying the origin of collisional decoherence which is strongly connected with the complexity of the system. Thus it gives us a global guide map toward further clarification of the collisional decoherence phenomenon with the aid of more sophisticated quantum mechanical calculations in the future.  相似文献   

9.
A simple gasdynamic model, called CHEMSHOCK, has been developed to predict the temporal evolution of combustion gas temperature and species concentrations behind reflected shock waves with significant energy release. CHEMSHOCK provides a convenient simulation method to study various sized combustion mechanisms over a wide range of conditions. The model consists of two successive suboperations that are performed on a control mass during each infinitesimal time step: (1) first the gas mixture is allowed to combust at constant internal energy and volume; (2) then the gas is isentropically expanded (or compressed) at frozen composition to the measured pressure. The CHEMSHOCK model is first validated against results from a one‐dimensional reacting computational fluid dynamics (CFD) code for a representative case of heptane/O2/Ar mixture using a reduced mechanism. CHEMSHOCK is found to accurately reproduce the results of the CFD calculation with significantly reduced computational time. The CHEMSHOCK simulation results are then compared to experimental results, for gas temperature and water vapor concentration, obtained using a novel laser sensor based on fixed‐wavelength absorption of two H2O rovibrational transitions near 1.4 μm. Excellent agreement is found between CHEMSHOCK simulations and measurements in a progression of shock wave tests: (1) in H2O/Ar, with no energy release; (2) in H2/O2/Ar, with relatively small energy release; and (3) in heptane/O2/Ar, with large energy release. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 189–198, 2008  相似文献   

10.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
采用射流冷却和高温瞬时热解技术研究了过氧化二叔丁基(DTBP)热解产物的质量分布和飞行时间谱。DTBP解离率与热解温度的关系表明,1300K时DTBP全部解离。以Ar为载气时,DTBP热解产物CH3COCH3的飞行时间谱上出现双峰,而以He或N2为载气时只出现单峰,表明在射流冷却下可能有部分CH3COCH3分子与Ar生成了范德华分子CH3COCH3·Arn·此外,还讨论了射流冷却下DTBP瞬时热解的机理。  相似文献   

12.
In this paper, the time resolution for kinetic studies of reactions with mass spectrometric detection is characterized in detail, and it is shown how this allows faster kinetic processes to be determined. The time‐resolved technique used pulsed laser photolysis to initiate reaction and a time‐of‐flight mass spectrometer (TOFMS) to monitor progress, where the reactant gas was sampled by a sampling orifice and photoionized using pulsed, laser vacuum ultraviolet light before being analyzed by the TOFMS. Characterization of this setup has been carried out to identify the parameters that affect the time for “sampling,” which limits the fastest reactions that can be measured. A simple mathematical equation has been developed to correct for “sampling” delays (ksampling~25, 000 s?1), which extends the range of rate coefficients to be measured in a kinetic mass spectrometry reactor to k′ < 7000 s?1. This method could be applied to any other kinetic mass spectrometry system where ksampling can be measured; an important advantage since it allows the study of reactions over a wider range of conditions (e.g., larger concentrations of reagents/products can be used to minimize the contribution from wall losses). The system can produce reliable kinetic data whether monitoring reactant decay or product growth even when the reaction and sampling processes are occurring on a similar timescale (k′ < 7000 s?1). Reproducible and reliable kinetic data have been obtained for the following reactions: SO + NO2 → products (R1), ClSO + NO2 → products (R2), where SO and ClSO were monitored under pseudo‐first‐order conditions, and HCO + O2 → CO + HO2 (R3), where CO was monitored by a [1+1] resonance enhanced ionization multiphoton ionization (REMPI) scheme with HCO reacting under pseudo–first‐order conditions. The limitations and potential developments of this setup are described. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 532–545, 2012  相似文献   

13.
Shen X  Wang P  Hu S  Yang Z  Ma H  Gao W  Zhou Z  Wang H 《Talanta》2011,84(4):1057-1062
The inert gas fusion and infrared absorption and thermal conductivity methods are widely used for quantitative determination of oxygen(O), nitrogen(N) and hydrogen(H) in metals. However, O, N and H cannot be determined simultaneously with this method in most cases and the sensitivity cannot meet the requirement of some new metal materials. Furthermore, there is no equipment or method reported for determination of Argon(Ar) or Helium(He) in metals till now. In this paper, a new method for simultaneous quantitative determination of O, N, H and Ar(or He) in metals has been described in detail, which combined the pulse heating inert gas fusion with time of flight mass spectrometric detection. The whole analyzing process was introduced, including sample retreatment, inert gas fusion, mass spectral line selection, signal acquisition, data processing and calibration. The detection limit, lower quantitative limit and linear range of each element were determined. The accuracy and precision of the new method have also been verified by measurements of several kinds of samples. The results were consistent with that obtained by the traditional method. It has shown that the new method is more sensitive and efficient than the existing method.  相似文献   

14.
A rapid synthesis of 1,3,4,5‐tetraaryl‐substituted pyrazoles has been achieved through a sequence of SNAr reaction/Suzuki–Miyaura coupling/Pd‐catalyzed direct arylations that used 3‐iodo‐1H‐pyrazole as a scaffold. Pyrazoles with four different aryl groups were synthesized in a straightforward manner with no extra synthetic steps, such as protection/deprotection or the introduction of activating/directing groups, using readily available substrates and reagents. The developed synthetic approach enabled the structurally diverse synthesis of multiaryl‐substituted pyrazoles without using a glovebox technique.  相似文献   

15.
Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10–30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high‐performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2‐hydroxy ethanal.  相似文献   

16.
Accurate mass measurement (used to determine elemental formulae) is an essential tool for impurity identification in pharmaceutical development for process understanding. Accurate mass liquid chromatography/mass spectrometry (LC/MS) is used widely for these types of analyses; however, there are still many occasions when gas chromatography (GC)/MS is the appropriate technique. Therefore, the provision of robust technology to provide accurate mass GC/MS (and GC/MS/MS) for this type of activity is essential. In this report we describe the optimisation and application of a newly available atmospheric pressure chemical ionisation (APCI) interface to couple GC to time‐of‐flight (TOF) MS. To fully test the potential of the new interface the APCI source conditions were optimised, using a number of standard compounds, with a variety of structures, as used in synthesis at AstraZeneca. These compounds were subsequently analysed by GC/APCI‐TOF MS. This study was carried out to evaluate the range of compounds that are amenable to analysis using this technique. The range of compounds that can be detected and characterised using the technique was found to be extremely broad and include apolar hydrocarbons such as toluene. Both protonated molecules ([M + H]+) and radical cations (M+.) were observed in the mass spectra produced by APCI, along with additional ion signals such as [M + H + O]+. The technique has been successfully applied to the identification of impurities in reaction mixtures from organic synthesis in process development. A typical mass accuracy of 1–2 mm/zunits (m/z 80–500) was achieved allowing the reaction impurities to be identified based on their elemental formulae. These results clearly demonstrate the potential of the technique as a tool for problem solving and process understanding in pharmaceutical development. The reaction mixtures were also analysed by GC/electron ionisation (EI)‐MS and GC/chemical ionisation (CI)‐MS to understand the capability of GC/APCI‐MS relative to these two firmly established techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Mass Spectrometry has been the usual method to determine Ar concentrations in mineral samples for dating them through the40Ar/40K ratio. This technique has been replaced since 1966 by measurement of40Ar/39Ar ratio, after artificial production of39Ar from the39K(n,p)39Ar reaction produced in the fast neutron flux of a nuclear reactor. This method requires the fusion of the sample by incremental heating until reaching a temperature of 1000°C in order to get the total release of both argon isotopes. In principle, it should be possible to determine the40Ar/40K ratio by activation analysis in an easier, non-destructive way, but it presents the following drawbacks: manufacture of argon standards; usual low ratio peak/Compton distribution for both peaks: 1.29 Mev and 1.52 Mev (41Ar and42K respectively), since potassium minerals are usually very rich in sodium, manganese and chlorine; reaction41K(n,p)41Ar induced by fast neutrons present in the thermal flux; and possible contamination of the samples and standards with atmospheric40Ar (99.6% of elementary Ar, whose proportion in the atmosphere at sea level is 0.93%). This paper describes how these problems may be solved, also determining the limits of Ar and K concentration related to Compton distribution, in our experimental conditions.  相似文献   

18.
The 18O and 2H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor δ18O and δ2H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring δ18O and δ2H which achieve accuracy levels similar to those of lab‐based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long‐term field deployment at remote field sites. A new method called Off‐Axis Integrated Cavity Output Spectroscopy (OA‐ICOS) has been developed which requires extremely low‐energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS‐based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT‐100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas‐sampling systems. The precisions of this instrument and the associated calibration method can reach ~0.08‰ for δ18O and ~0.4‰ for δ2H. Compared with conventional mass spectrometry and other LAS‐based methods, the OA‐ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Rate coefficients of the title reaction have been measured in a high‐temperature photochemistry (HTP) reactor using Ar as the bath gas. H atoms were generated by flash photolysis of NH3 and their relative concentrations were monitored by resonance fluorescence. The data are best fitted by k(295–905 K) = 6.5 × 10?34 (T/K)0.206 exp(780K T) cm6 molecule?2 s?1, with ±2σ precision values varying from 16 to 36% and corresponding suggested accuracy levels of 29–42%. Using a literature value for the relative collision efficiencies of N2 and Ar indicates that for N2 as the third body the above rate coefficient expression should be multiplied by 1.6. This leads to good agreement with two recent near 1000 K measurements. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 374–380, 2003  相似文献   

20.
Compound identification is a critical process in metabolomics. The widely used approach for compound identification in gas chromatography–mass spectrometry‐based metabolomics is spectrum matching, in which the mass spectral similarity between an experimental mass spectrum and each mass spectrum in a reference library is calculated. While various similarity measures have been developed to improve the overall accuracy of compound identification, little attention has been paid to reducing the false discovery rate. We, therefore, develop an approach for controlling the false identification rate using the distribution of the difference between the first and second highest spectral similarity scores. We further propose a model‐based approach to achieving a desired true positive rate. The developed method is applied to the National Institute of Standards and Technology mass spectral library, and its performance is compared with that of the conventional approach that uses only the maximum spectral similarity score. The results show that the developed method achieves a significantly higher F1 score and positive predictive value than did the conventional approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号