首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a 'Particle-In-Cell' approach taken from plasma physics we have developed a new three-dimensional (3D) parallel computer code that today yields the highest possible accuracy of ion trajectory calculations in electromagnetic fields. This approach incorporates coulombic ion-ion and ion-image charge interactions into the calculation. The accuracy is achieved through the implementation of an improved algorithm (the so-called Boris algorithm) that mathematically eliminates cyclotron motion in a magnetic field from digital equations for ion motion dynamics. It facilitates the calculation of the cyclotron motion without numerical errors. At every time-step in the simulation the electric potential inside the cell is calculated by direct solution of Poisson's equation. Calculations are performed on a computational grid with up to 128 x 128 x 128 nodes using a fast Fourier transform algorithm. The ion populations in these simulations ranged from 1000 up to 1,000,000 ions. A maximum of 3,000,000 time-steps were employed in the ion trajectory calculations. This corresponds to an experimental detection time-scale of seconds. In addition to the ion trajectories integral time-domain signals and mass spectra were calculated. The phenomena observed include phase locking of particular m/z ions (high-resolution regime) inside larger ion clouds. A focus was placed on behavior of a cloud of ions of a single m/z value to understand the nature of Fourier transform ion cyclotron resonance (FTICR) resolution and mass accuracy in selected ion mode detection. The behavior of two and three ion clouds of different but close m/z was investigated as well. Peak coalescence effects were observed in both cases. Very complicated ion cloud dynamics in the case of three ion clouds was demonstrated. It was found that magnetic field does not influence phase locking for a cloud of ions of a single m/z. The ion cloud evolution time-scale is inversely proportional to magnetic field. The number of ions needed for peak coalescence depends quadratically on the magnetic field.  相似文献   

2.
Particle-in-Cell (PIC) ion trajectory calculations provide the most realistic simulation of Fourier transform ion cyclotron resonance (FT-ICR) experiments by efficient and accurate calculation of the forces acting on each ion in an ensemble (cloud), including Coulomb interactions (space charge), the electric field of the ICR trap electrodes, image charges on the trap electrodes, the magnetic field, and collisions with neutral gas molecules. It has been shown recently that ion cloud collective behavior is required to generate an FT-ICR signal and that two main phenomena influence mass resolution and dynamic range. The first is formation of an ellipsoidal ion cloud (termed “condensation”) at a critical ion number (density), which facilitates signal generation in an FT-ICR cell of arbitrary geometry because the condensed cloud behaves as a quasi-ion. The second phenomenon is peak coalescence. Ion resonances that are closely spaced in m/z coalesce into one resonance if the ion number (density) exceeds a threshold that depends on magnetic field strength, ion cyclotron radius, ion masses and mass difference, and ion initial spatial distribution. These two phenomena decrease dynamic range by rapid cloud dephasing at small ion density and by cloud coalescence at high ion density. Here, we use PIC simulations to quantitate the dependence of coalescence on each critical parameter. Transitions between independent and coalesced motion were observed in a series of the experiments that systematically varied ion number, magnetic field strength, ion radius, ion m/z, ion m/z difference, and ion initial spatial distribution (the present simulations begin from elliptically-shaped ion clouds with constant ion density distribution). Our simulations show that mass resolution is constant at a given magnetic field strength with increasing ion number until a critical value (N) is reached. N dependence on magnetic field strength, cyclotron radius, ion mass, and difference between ion masses was determined for two ion ensembles of different m/z, equal abundance, and equal cyclotron radius. We find that N and dynamic range depend quadratically on magnetic field strength in the range 1–21 Tesla. Dependences on cyclotron radius and Δm/z are linear. N depends on m/z as (m/z)–2. Empirical expressions for mass resolution as a function of each of the experimental parameters are presented. Here, we provide the first exposition of the origin and extent of trade-off between FT-ICR MS dynamic range and mass resolution (defined not as line width, but as the separation between the most closely resolved masses).  相似文献   

3.
A new Fourier transform ion cyclotron resonance (FTICR) cell based on completely new principles of formation of the effective electric potential distribution in Penning type traps, Boldin and Nikolaev (Proceedings of the 58th ASMS Conference, 2010), Boldin and Nikolaev (Rapid Commun Mass Spectrom 25:122–126, 2011) is constructed and tested experimentally. Its operation is based on the concept of electric potential space-averaging via charged particle cyclotron motion. Such an averaging process permits an effective electric force distribution in the entire volume of a cylindrical Penning trap to be equal to its distribution in the field created by hyperbolic electrodes in an ideal Penning trap. The excitation and detection electrodes of this new cell are shaped for generating a quadratic dependence on axial coordinates of an averaged (along cyclotron motion orbit) electric potential at any radius of the cyclotron motion. These electrodes together with the trapping segments form a cylindrical surface like in a conventional cylindrical cell. In excitation mode this cell being elongated behaves almost like an open cylindrical cell of the same length. It is more effective in ion motion harmonization at larger cyclotron radii than a Gabrielse et al.-type (Int J Mass Spectrom Ion Processes 88:319–332, 1989) cylindrical cell with four compensation sections. A mass resolving power of more than twenty millions of reserpine (m/z 609) and more than one million of highly charged BSA molecular ions (m/z 1357) has been obtained in a 7T magnetic field.  相似文献   

4.
A new tryptophyllin‐like peptide family was found in the skin secretion of the tree frog Hyla savignyi. Peptides were characterized by database‐independent sequencing strategies and specific ion fragmentation features were investigated. Skin secretions from specimens of Hyla savignyi were collected by mild electrical stimulation. Peptides were separated by reversed‐phase nano‐high‐performance liquid chromatography (nanoHPLC) and mass spectra were acquired online by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR‐MS). Peptides were characterized by manual de novo sequencing and by composition‐based sequencing (CBS), appearing mostly as C‐terminal free acids and as their acid amide analogs. Amide peptides yielded lower intensities of y‐type ions after collision‐induced dissociation (CID) than their acid analogs. A mechanism of internal b‐ion formation (positive ion mode) and of CO2 elimination (negative ion mode) is proposed. We also exemplified phenomena such as the proline effect and formation of non‐direct sequence ions after sequence rearrangements. The occurrence of rearrangement products, of internal ions and of the proline effect made the CID spectra highly complex. CBS analysis nevertheless resulted in successful and highly reliable sequence analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Ion trajectory calculations have confirmed that space charge interactions can be a source for mass discrimination seen in Fourier transform-ion cyclotron resonance (FT-ICR) spectra. As compared with the previously recognized mechanism of z-axis excitation, ion-ion repulsion is a mechanism which specifically affects relative peak heights of ions close in mass, and is most severe for low excitation radiofrequency (rf) amplitudes. In this mechanism, Coulomb repulsion significantly perturbs the motion of the ion clouds during excitation and alters the final cyclotron orbital radii. Under these conditions peak heights do not accurately reflect the true ion abundances in the FT-ICR spectrometer. Mass discrimination can be minimized by using low numbers of ions, low ion densities, and a short, high amplitude rf excitation waveform. Experimental observation of the relative peak heights of the m/z 91, 92, and 134 ions in n-butylbenzene gives quantitative confirmation of the results of the trajectory calculations. Chirp, SWIFT, and impulse excitation were modeled: impulse excitation was found to be most effective in minimizing the effects of space charge interactions.  相似文献   

6.
Resolving power of about 12,000 000 at m/z 675 has been achieved on low field homogeneity 4.7 T magnet using a dynamically harmonized Fourier transform ion cyclotron resonance (FT ICR) cell. Mass spectra of the fine structure of the isotopic distribution of a peptide were obtained and strong discrimination of small intensity peaks was observed in case of resonance excitation of the ions of the whole isotopic cluster to the same cyclotron radius. The absence of some peaks from the mass spectra of the fine structure was explained basing on results of computer simulations showing strong ion cloud interactions, which cause the coalescence of peaks with m/z close to that of the highest magnitude peak. The way to prevent peak discrimination is to excite ion clouds of different m/z to different cyclotron radii, which was demonstrated and investigated both experimentally and by computer simulations.
Figure
?  相似文献   

7.
Space charge effects play important roles in the performance of various types of mass analyzers. Simulation of space charge effects is often limited by the computation capability. In this study, we evaluate the method of using graphics processing unit (GPU) to accelerate ion trajectory simulation. Simulation using GPU has been compared with multi-core central processing unit (CPU), and an acceleration of about 390 times have been obtained using a single computer for simulation of up to 105 ions in quadrupole ion traps. Characteristics of trapped ions can be investigated at detailed levels within a reasonable simulation time. Space charge effects on the trapping capacities of linear and 3D ion traps, ion cloud shapes, ion motion frequency shift, mass spectrum peak coalescence effects between two ion clouds of close m/z are studied with the ion trajectory simulation using GPU.  相似文献   

8.
A simple and sensitive liquid chromatography tandem multiple‐stage mass spectrometry (HPLC/MS/MS) method suitable for bulk lisinopril analysis was developed, by which lisinopril and its RSS isomer were separated and differentiated. In the collision‐induced dissociation (CID) mass spectra of the [M + H]+ ions, the abundance of the fragment ion of m/z 246 for lisinopril was about two times higher than the ion of m/z 245; however, the former fragment ion was noted to be a little lower than the latter for RSS isomer at all collision energies. In the CID mass spectra of the [M + Li]+ ion, the abundance of the rearrangement ion of m/z 315 for the RSS isomer was about three times higher than that for lisinopril. Furthermore, the difference was supported by the results of energy‐resolved mass spectrometry (ERMS) in the test range of collision energies. Similar differences were also observed between the CID mass spectra of lisinopril and RSS isomer methylester, which indicated that the RSS isomer could be rapidly characterized by the CID mass spectra of both the protonated and lithium adduct ion. Elemental compositions of all the ions were confirmed by Fourier Transform ion cyclotron resonance ESI mass spectrometry (FT‐ICR‐ESI/MS). In addition, theoretical computations were carried out to support the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Mechanistic aspects of an unusual gas‐phase reaction of [LaCH2]+ with halobenzenes have been investigated using Fourier‐transform ion cyclotron resonance (FTICR) mass spectrometry combined with density functional theory (DFT) calculations. In this thermal process a carbon‐atom from the benzene ring, most likely the ipso‐position, and the carbene ligand are coupled to form C2H2.  相似文献   

10.
The conceptual design of the O‐trap Fourier transform ion cyclotron resonance (FT‐ICR) cell addresses the speed of analysis issue in FT‐ICR mass spectrometry. The concept of the O‐trap includes separating the functions of ion excitation and detection between two different FT‐ICR cell compartments. The detection compartment of the O‐trap implements additional internal coaxial electrodes around which ions with excited cyclotron motion revolve. The expected benefits are higher resolving power and the lesser effect of the space charge. In this work we present the first experimental demonstration of the O‐trap cell and its features, including the high ion transfer efficiency between two distinct compartments of an ICR cell after excitation of the coherent cyclotron motion. We demonstrate that utilization of the multiple‐electrode detection in the O‐trap provides mass resolving power enhancement (achieved over a certain time) equal to the order of the frequency multiplication. In an O‐trap installed in a 5 T desk‐top cryogen‐free superconducting magnet, the resolving power of R = 80 000 was achieved for bradykinin [M + 2H]2+ (m/z 531; equivalent to 100 000 when recalculated for m/z 400) in 0.2 s analysis time (transient length), and R = 300 000 at m/z 531 for a 1 s transient. In both cases, detection on the third multiple of the cyclotron frequency was implemented. In terms of the acquisition speed at fixed resolving power, such performance is equivalent to conventional FT‐ICR detection using a 15 T magnet. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The kinetic energy-dependent Ar++ N2 ion-molecule reaction has been used as a chemical “thermometer” to determine the kinetic energy of ions produced by electron ionization and trapped by using a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The rate constant for this reaction obtained on the FTICR mass spectrometer was compared to previous work, which allowed a kinetic energy estimate to be made. In addition, the effects of varying parameters such as trapping voltage and pressure on ion kinetic energy were investigated. No evidence of the differing reactivity of higher energy electronic states of Ar+, such as 2P1/2, was observed and the results of a model of this system are presented that support this observation. Pressure studies revealed that with an average of as few as 13 ion-molecule collisions, Ar+ ions are collisionally relaxed to an extent unaffected by additional collisions. Based on recent variable temperature selected ion flow drift tube measurements, FTICR ion energies are estimated to be slightly above thermal.  相似文献   

12.
Presented is the application and evaluation of a magnetic field focusing central trapping electrode ion accumulation cell for a capillary liquid chromatography electrospray Fourier transform ion cyclotron (LC-ESI/FTICR) mass spectrometer. The ESI source and accumulation cell are located within the magnetic field to confine the radial motion of the ions, eliminating the need for elaborate focusing optics to transport the ions to the low-pressure analyzer cell for analysis. The central trapping electrode accumulation cell increases sensitivity by providing the necessary potential well in a confined volume to capture ions currently lost during the detection event of LC/FTICR experiments. With this electrode geometry the time needed to gate the ions into the analyzer cell is reduced and pump down delays are minimized. The decreased scan time improves LC resolution and increases the number of mass spectral scans per eluted component while maintaining appropriate base pressures for high performance ESI/FTICR. Results achieved with the central trapping electrode accumulation cell include an effective duty cycle increase from 10% to 40%, a S/N increase by a factor of 30, and a mass resolution increase of 80%.  相似文献   

13.
The fragmentation pathways of lithiated α,β‐unsaturated thioesters with different substituents were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) in positive ion mode. In mass spectrometry of the α,β‐unsaturated thioesters, Ar‐CH?CH‐CO‐S‐Ph, loss of PhSLi and elimination of a thiophenol were the two major fragmentation reactions of the lithiated molecules. The elemental compositions of all the ions were confirmed by high‐resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FTICR‐MS/MS). The thioesters studied here were para‐monosubstituted on the phenyl ring of cinnamoyl and the electron‐withdrawing groups favored loss of a thiophenol, whereas the electron‐releasing groups strongly favored the competing reaction leading to the loss of PhSLi to form a cinnamoyl cation, Ar‐CH?CHCO+. The intensity ratios of the two competitive product ions were well correlated with the σ substituent constants. The mechanisms of these two competing routes were further investigated by density functional theory (DFT) calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Fourier transform ion cyclotron resonance (FTICR), spectra generated for large ion populations exhibit frequency shifts and line broadening, apparently due to Coulomb forces between ions. Although previous two-dimensional (2D) models of Coulomb effects in FTICR accounted for frequency shifts, they did not account for spectral line broadening. In this article, a 2D model is proposed that predicts line broadening due to Coulomb-induced frequency modulation. The model considers the case of two different-mass ions orbiting at their respective cyclotron frequencies around a common guiding center. A mutual modulation of the cyclotron frequency occurs at the difference frequency between ions. If the modulation period is much shorter than the FTICR observation time, then sidebands spaced at intervals approximately equal to the modulation frequency are predicted. However, if the modulation period is similar in duration to the FTICR observation period, the sidebands can no longer be resolved, which results in spectral line broadening. This latter case is a necessary consequence for isotopic peaks in the high mass region around m/z 2000, where deterioration in FTICR performance has been observed. Computer simulations are used to confirm the mass dependence and to demonstrate other features of the model, including a strong dependence of the modulation on ion number. In support of the model, experimental FTICR spectra for large populations of methylnapthalene ions at m/z 141 and 142 exhibit constant frequency sidebands corresponding to multiples of the difference frequency for the two ions extending from nominal values of m/z 136 to 147.  相似文献   

15.
Chemistry of indium phosphide clusters is studied using the powerful trapped ion cell techniques of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry in conjunction with an external cluster source and ion guide. The external source is capable of generating a wide range of cluster ions which the ion guide loads with high efficiency into the FTICR cell. The differential pumping of the ion guide allows for operation of the FTICR at requisite low pressure conditions while extracting clusters generated in a high pressure environment. Highly selective reactions of indium phosphide clusters are observed with ammonia and trimethylamine. Of all the InxP+y cluster sizes and stoichiometries studied, only the indium dimer ion reacts exothermically with ammonia. Thermalized In+2 reacts by indium ion transfer to ammonia. Owing to its much higher basicity, trimethylamine is much more reactive. The smaller indium phosphide clusters react by indium ion transfer to trimethylamine. As the clusters become larger, however, the reaction probability decreases to zero.  相似文献   

16.
Initial results obtained using a new electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated at a magnetic field 11.5 tesla are presented. The new instrument utilized an electrostatic ion guide between the ESI source and FTICR trap that provided up to 5% overall transmission efficiency for light ions and up to 30% efficiency for heavier biomolecules. The higher magnetic field in combination with an enlarged FTICR ion trap made it possible to substantially improve resolving power and operate in a more robust fashion for large biopolymers compared to lower field instruments. Mass resolution up to 106 has been achieved for intermediate size biopolymers such as bovine ubiquitin (8.6 kDa) and bovine cytochrome c (12.4 kDa) without the use of frequency drift correction methods. A mass resolution of 370,000 has been demonstrated for isotopically resolved molecular ions of bovine serum albumin (66.5 kDa). Comparative measurements were made with the same spectrometer using a lower field 3.5-tesla magnet allowing the performance gains to be more readily quantified. Further improvements in pumping capacity of the vacuum system and efficiency of ion transmission from the source are expected to lead to further substantial sensitivity gains.  相似文献   

17.
The identification of two unsaturated N‐acylhomoserine lactones (AHLs) produced by Rhodobacter sphaeroides bacteria, based on liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ)‐Fourier transform ion cyclotron resonance (FTICR) mass spectrometer upon electrospray ionization (ESI), is presented. Besides the confirmation of the signaling molecule already described in the literature, i.e. (Z)‐N‐tetradec‐7‐enoyl‐homoserine lactone (C14:1‐HSL), we have discovered the occurrence, at low, yet significant levels, of another monounsaturated compound, C12:1‐HSL, which may extend the number of small diffusible chemical signals known for R. sphaeroides. Both unsaturated AHLs were identified by high‐resolution FTICR mass spectrometry in extracts of bacterial culture media and the occurrence of a C=C bond was assessed upon their conversion into bromohydrins. Collision‐induced dissociation (CID) spectra were then collected on the LTQ mass analyzer. A careful comparison of tandem MS spectra of monounsaturated (i.e., C12:1‐HSL and C14:1‐HSL) and saturated AHLs (i.e. C12‐HSL and C14‐HSL) led to the emphasis of two series of product ions, exhibiting 14 Da spaced m/z ratios. Both series were referred to progressive fragmentations at the aliphatic end of the AHL acyl chains, followed by neutral losses of terminal alkenes (i.e. CH2=CH(CH2)nH). In particular, the series located at the higher end of the explored m/z range (>200 Da), observed only for monounsaturated species, enabled the location of the C=C bond between carbons 7 and 8 of the acyl chain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
With Fourier transform ion cyclotron resonance (FTICR) mass spectrometry one determines the mass-to-charge ratio of an ion by measuring its cyclotron frequency. However, the need to confine ions to the trapping region of the ion cyclotron resonance (ICR) cell with electric fields induces deviations from the unperturbed cyclotron frequency. Additional perturbations to the observed cyclotron frequency are often attributed to changes in space charge conditions. This study presents a detailed investigation of the observed ion cyclotron frequency as a function of ion z-axis kinetic energy. In a perfect three-dimensional quadrupolar field, cyclotron frequency is independent of position within the trap. However, in most ICR cell designs, this ideality is approximated only near the trap center and deviations arise from this ideal quadrupolar field as the ion moves both radially and axially from the center of the trap. To allow differentiation between deviations in observed cyclotron frequency caused from changes in space charge conditions or differences in oscillation amplitude, ions with identical molecular weights but different axial kinetic energy, and thus amplitude of z-axis motion, were simultaneously trapped within the ICR cell. This allows one to attribute deviations in observed cyclotron frequency to differences in the average force from the radial electric field experienced by ions of different axial amplitude. Experimentally derived magnetron frequency is compared with the magnetron frequency calculated using SIMION 7.0 for ions of different axial amplitude. Electron promoted ion coherence, or EPIC, is used to reduce the differences in radial electric fields at different axial positions. Thus with the application of EPIC, the differences in observed cyclotron frequencies are minimized for ions of different axial oscillation amplitudes.  相似文献   

19.
The fragmentation characteristics of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids were investigated by electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry using sustained off-resonance irradiation collision-induced dissociation (SORI-CID) and infrared multiphoton dissociation (IRMPD). The fragmentation patterns of these compounds were associated with the number and positions of the hydroxyl substituents. The fragmentation is more complicated with increasing number of the hydroxyl groups of the compounds. In general, the major carbon-carbon cleavage of [M−H] ions occurred at the α-position to the hydroxyl group, and the carbon-carbon cleavage occurred when there was a double-bond at the β-position to the hydroxyl group. SORI-CID and IRMPD produced some common fragmentation patterns; however, each technique provided some unique patterns that are useful for structural identification of these compounds. This study demonstrated the application of FTICR via the identification of regioisomers of trihydroxyeicosatrienoic acids in rabbit aorta samples.  相似文献   

20.
A novel pulse sequence improving the efficiency for electron capture dissociation (ECD) of an unmodified Fourier transform ion cyclotron resonance (FTICR) mass spectrometer by more than an order of magnitude is presented. Commercially available FTICR instruments are usually equipped with a filament-based electron source producing an electron beam that has a rather small cross section. An ideal overlap between the rotating ion cloud and the electron beam appears to be a prerequisite for a high ECD efficiency. A reduced interception of the ion cloud and the electron beam is probably due to the contribution of the magnetron motion to the trajectory of the ions, resulting in a precession about the z-axis of the instrument. By increasing the kinetic energy and therefore increasing the cyclotron radii of the precursor ions by resonant excitation, the overlap of the rotating ion cloud with the electron beam is improved. By use of this protocol the efficiency of electron capture is substantially increased and consequently the acquisition time of ECD spectra is reduced significantly. The capability of resonant excitation of the precursor ions during the irradiation with electrons is demonstrated for standard peptides. This approach is particularly valuable for analysis and characterization of O-glycosylated peptides. In addition to amino acid sequence information, the attachment site of the labile glycan moiety is determined, and also radical-site-induced fragmentations of the glycosidic bonds are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号