共查询到20条相似文献,搜索用时 0 毫秒
1.
Rui GUO Jialin ZHANG Songtao ZHAO Xiaojiang YU Shu ZHONG Shuo SUN Zhenyu LI Wei CHEN 《物理化学学报》2017,33(3):627-632
Corannulene (COR) is considered a promising molecular building block for organic electronics owing to its intriguing geometrical and electronic properties. Intensive research efforts have been devoted to understanding the assembly behavior and electronic structure of COR and its derivatives on various metal surfaces via low-temperature scanning tunneling microscopy (LT-STM). Here we report the formation of binary molecular networks of copper hexadecafluorophthalocyanine (F16CuPc)-COR self-assembled on the highly oriented pyrolytic graphite (HOPG) and Ag (111) substrates. Intermolecular hydrogen bonding between F16CuPc and COR facilitates the formation of binary molecular networks on HOPG and further induces a preference for bowl-down configured COR molecules. This observed configuration preference disappears on Ag (111) substrate, where COR molecules lie on the substrate with their bowl openings pointing up and down randomly. We propose that strong interfacial interactions between the molecule and Ag (111) surface constrain the bowl inversion of the COR molecule, which thus retains its initial configuration upon adsorption. 相似文献
2.
Dao Trinh Dr. Michel Keddam Prof. Xosé Ramón Novoa Dr. Vincent Vivier 《Chemphyschem》2011,12(11):2177-2183
A scanning electrochemical microscope (SECM) in ac mode is used for the characterisation of the adsorption process during the hydrogen evolution reaction (HER) in sulfuric acid solution. It is shown that this technique allows quantitative analysis of the adsorption process, and measurements of the differential capacitance with the frequency as parameter are obtained. The time constant for relaxation of adsorbed hydrogen (Hads) is approximately 2 Hz, and analysis of the Nyquist plot allows direct evaluation of the charge involved. In addition, the direct comparison of the usual electrochemical impedance data and ac‐SECM results obtained simultaneously permits characterisation of processes occurring at the surface and in solution. 相似文献
3.
Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were performed on monolayer film of NiTPP supported on Au(111) under ultrahigh vacuum (UHV) conditions. The constant current STM images show remarkable bias dependence. High resolution STM data clearly show the individual NiTPP molecules and allow easy differentiation between NiTPP and CoTPP reported before. Scanning tunneling spectra, as a function of molecule-tip separation, were acquired over a range of tip motion of 0.42 nm. Spectra do not show the variation in band splitting with tip distance. It appears for molecules such as NiTPP that the average potential at the molecule is essentially the same at the same metal substrate. For molecules of the height of NiTPP, the scanning tunneling spectra should give reliable occupied and unoccupied orbital energies over a wide range of tip-molecule distances. 相似文献
4.
Dr. Liang Zhang Michael Lepper Michael Stark Ralf Schuster Dominik Lungerich Prof. Dr. Norbert Jux Prof. Dr. Hans‐Peter Steinrück Dr. Hubertus Marbach 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(10):3347-3354
The adsorption behavior of 2H‐tetrakis(3,5‐di‐tert‐butyl)phenylporphyrin (2HTTBPP) on Cu(110) and Cu(110)–(2×1)O surfaces have been investigated by using variable‐temperature scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. On the bare Cu(110) surface, individual 2HTTBPP molecules are observed. These molecules are immobilized on the surface with a particular orientation with respect to the crystallographic directions of the Cu(110) surface and do not form supramolecular aggregates up to full monolayer coverage. In contrast, a chiral supramolecular structure is formed on the Cu(110)–(2×1)O surface, which is stabilized by van der Waals interactions between the tert‐butyl groups of neighboring molecules. These findings are explained by weakened molecule–substrate interactions on the Cu(110)–(2×1)O surface relative to the bare Cu(110) surface. By comparison with the corresponding results of Cu–tetrakis(3,5‐di‐tert‐butyl)phenylporphyrin (CuTTBPP) on Cu(110) and Cu(110)–(2×1)O surfaces, we find that the 2HTTBPP molecules can self‐metalate on both surfaces with copper atoms from the substrate at room temperature (RT). The possible origins of the self‐metalation reaction at RT are discussed. Finally, peculiar irreversible temperature‐dependent switching of the intramolecular conformations of the investigated molecules on the Cu(110) surface was observed and interpreted. 相似文献
5.
Basic regularities of electrochemical processes in the gap of an ex situ scanning tunneling microscope in conditions of condensation of air moisture at the sample surface are considered on a qualitative level. A layer of condensed moisture is viewed as an electrolyte in a two-electrode cell. The depolarizers present in this layer may experience electrochemical conversions on the tip and in an area of the sample surface near the tip. As a result, the recorded “tunneling” current includes electrochemical constituents. Depending on the electrochemical processes in the gap, various dependences of the tip-sample distance on the current and applied voltage can be expected. For preliminary diagnostics of processes in the gap it is suggested to use voltage-height spectra, whose shape and characteristic heights are sensitive to the nature and location of redox active species. Experimental data for various films on conducting supports (quasi-two-dimensional adsorbed layers of hemin and peroxidase, electrodeposited nonstoichiometric tungsten oxides, doped tin dioxide, solid electrolyte with ionic conduction) are presented as an examples.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 583–595.Original Russian Text Copyright © 2005 by Yusipovich, Vassiliev. 相似文献
6.
The 2D self‐assembly of various 2‐hydroxy‐7‐alkoxy‐9‐fluorenone (HAF) molecules has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface. A systematic study revealed that HAF molecules with different numbers of carbon atoms in their alkoxy chains could form two or three different kinds of nanostructures, that is, less‐ordered, flower‐like, and zig‐zag patterns, owing to the formation of different types of intermolecular hydrogen bonds. The observed structural transition was found to be driven by molecular thermodynamics, surface diffusion, and the voltage pulse that was applied to the STM tip. The zig‐zag pattern was the most stable of these configurations. An odd–even effect on the flower‐like structure, as induced by the odd and even number of carbon atoms in the side chain, was observed by STM. The influence of the odd–even effect on the melting point has a close relationship with the molecular self‐assembled pattern. Our results are significant for understanding the influence of hydrogen‐bonding interactions on the dominant adsorption behavior on the surface and provide a new visual approach for observing the influence of the odd–even effect on the phase transition. 相似文献
7.
Formation of a hydrogen‐bond network via an amide group is a key driving force for the nucleation–elongation‐type self‐assembly that is often seen in biomolecules and artificial supramolecular assemblies. In this work, rod‐coil‐like aromatic compounds bearing an amide ( 1 a – 3 a ) or urea group ( 1 u – 3 u ) were synthesized, and their self‐assemblies on a 2‐D surface were investigated by scanning tunneling microscopy (STM). According to the quantitative analysis of the concentration dependence of the surface coverage, it was revealed that the strength of the hydrogen bond (i.e., amide or urea) and the number of non‐hydrogen atoms in a molecular component (i.e., size of core and length of alkyl side chain) play a primary role in determining the stabilization energy during nucleation and elongation processes of molecular ordering on the HOPG surface. 相似文献
8.
9.
拓宽具有原子分辨率的ECSTM研究至多晶电极表面 总被引:1,自引:0,他引:1
Electrochemical Scanning Tunneling Microscopy (ECSTM) has been extended to characterizc polycrystalline silver electrode surfaces in iodide solution. Potential-dependent ordered and disordered structures of the silver electrode as well as the iodine adsorption layer have been observed to coexist on polycrystalline silver electrode surfaces, for the first time. A very special column arrangement of the iodine adsorption layer, similar to the so called \"missing row\" type of structure has been observed. Some columns of the iodine adsorption layer roll over from one place to another along with the time and changing potential. A proposed model has been given to better describe the structure. The highly corrugated and loose surface structure of the polycrystalline surface are responsible for this special phenomenon. 相似文献
10.
Halogen bonds, which provide an intermolecular interaction with moderate strength and high directionality, have emerged as a promising tool in the repertoire of non-covalent interactions. In this review, we provide a survey of the literature where halogen bonding was used for the fabrication of supramolecular networks on solid surfaces. The definitions of, and the distinction between halogen bonding and halogen-halogen interactions are provided. Self-assembled networks formed at the solution/solid interface and at the vacuum-solid interface, stabilized in part by halogen bonding, are discussed. Besides the broad classification based on the interface at which the systems are studied, the systems are categorized further as those sustained by halogen-halogen and halogen-heteroatom contacts. 相似文献
11.
Jacob D. Teeter Dr. Percy Zahl Mohammad Mehdi Pour Dr. Paulo S. Costa Prof. Axel Enders Prof. Alexander Sinitskii 《Chemphyschem》2019,20(18):2281-2285
We report the on-surface synthesis and spectroscopic study of laterally extended chevron graphene nanoribbons (GNRs) and compare them with the established chevron GNRs, emphasizing the consistency of bandgap reduction of semiconducting GNRs with increased width. The laterally extended chevron GNRs grown on Au(111) exhibit a bandgap of about 2.2 eV, which is considerably smaller than the values reported for chevron GNRs in similar studies. 相似文献
12.
We have studied the growth of Ag on Si(5 5 12) using scanning tunneling microscopy and spectroscopy (STM/STS). At metal coverages as low as 0.05 monolayer (ML), Ag forms well-ordered overlayer rows, or one-dimensional clusters, on the underlying silicon surface. To produce these ordered structures, it is necessary to anneal the surface to 450°C. As the coverage is increased above 0.05 ML, the rows grow in length and number until the surface forms a periodic array of such structures at 0.25 ML. A statistical analysis of the rows reveals a linear increase in median row length as a function of coverage. With regard to their electronic behavior, STS measurements show a significantly narrower band gap along the Ag rows than is found on the underlying silicon structures. Therefore, the deposited Ag atoms do retain some metallic behavior. 相似文献
13.
14.
Redox enzymes, which catalyze electron transfer reactions in living organisms, can be used as selective and sensitive bioreceptors in biosensors, or as efficient catalysts in biofuel cells. In these bioelectrochemical devices, the enzymes are immobilized at a conductive surface, the electrode, with which they must be able to exchange electrons. Different physicochemical methods have been coupled to electrochemistry to characterize the enzyme-modified electrochemical interface. In this Review, we summarize most efforts performed to investigate the enzymatic electrodes at the micro- and even nanoscale, thanks to microscopy techniques. Contrary to electrochemistry, which gives only a global information about all processes occurring at the electrode surface, microscopy offers a spatial resolution. Several techniques have been implemented; mostly scanning probe microscopies like atomic force microscopy, scanning tunneling microscopy, and scanning electrochemical microscopy, but also scanning electron microscopy and fluorescence microscopy. These studies demonstrate that various information can be obtained thanks to microscopy at different scales. Electrode imaging has been performed to confirm the presence of enzymes, to quantify and localize the biomolecules, but also to evaluate the morphology of immobilized enzymes, their possible conformation changes upon turnover, and their orientation at the electrode surface. Local redox activity has also been imaged and kinetics has been resolved. 相似文献
15.
16.
17.
Dr. Thomas Diemant Andreas Bergbreiter Dr. Joachim Bansmann Dr. Harry E. Hoster Prof. Dr. R. Jürgen Behm 《Chemphyschem》2010,11(14):3123-3132
The correlation between structural and chemical properties of bimetallic PtRu/Ru(0001) model catalysts and their modification upon stepwise annealing of a submonolayer Pt‐covered Ru(0001) surface up to the formation of an equilibrated PtxRu1?x/Ru(0001) monolayer surface alloy was investigated by scanning tunneling microscopy and by the adsorption of CO and D2 probe molecules. Both temperature‐programmed desorption and IR measurements demonstrate the influence of the surface structure on the adsorption properties of the bimetallic surface, which can be explained by changes of the composition of the adsorption ensembles (ensemble effects) for D adsorption and by changes in the electronic interaction (ligand effects, strain effects) of the metallic constituents for CO and D adsorption upon alloy formation. 相似文献
18.
Thomas Waldmann Jens Klein Prof. Dr. Harry E. Hoster Prof. Dr. R. Jürgen Behm 《Chemphyschem》2013,14(1):162-169
Investigating the dynamics in an adlayer of the oligopyridine derivative 2‐phenyl‐4,6‐bis(6‐(pyridine‐2‐yl)‐4‐(pyridine‐4‐yl)pyridine‐2‐yl)pyrimidine (2,4′‐BTP) on Ag(111) by fast scanning tunneling microscopy (video‐STM), we found that rotating 2,4′‐BTP adsorbates coexist in a two‐dimensional (2D) liquid phase (β‐phase) in a dynamic equilibrium with static adsorbate molecules. Furthermore, exchange between an ordered phase (α‐phase) and β‐phase leads to fluctuations of the domain boundary on a time scale of seconds. Quantitative evaluation of the temperature‐dependent equilibrium between rotating and static adsorbates, evaluated from a large number of STM images, gains insight into energetic and entropic stabilization and underlines that the rotating adsorbate molecules are stabilized by an entropy contribution, which is compatible with that derived by using statistical mechanics. The general validity of the concept of entropic stabilization of rotating admolecules, favoring rotation already at room temperature, is tested for other typical small, mid‐size and large adsorbates. 相似文献
19.
Zhang Q Jaroniec J Lee G Marszalek PE 《Angewandte Chemie (International ed. in English)》2005,44(18):2723-2727