首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
NaSc3[HPO3]2[HPO2(OH)]6 was prepared by use of a phosphorus acid flux route. The crystal structure was determined from single‐crystal X‐ray diffraction data: triclinic, space group P$\bar{1}$ (No. 2), a = 7.4507(11) Å, b = 9.6253(17) Å, c = 9.6141(16) Å, α = 115.798(4)°, β = 101.395(4)°, γ = 101.136(3)°, V = 577.29(16) Å3 and Z = 1. The crystal structure of NaSc3[HPO3]2[HPO2(OH)]6 contains two kinds of phosphate(III) groups: HPO32– and HPO2(OH). Phosphate(III)‐tetrahedra, NaO6 and ScO6 octahedra together form a (3,6)‐connected net. During heating hydrogen and water are released and Sc[PO3]3 is formed as the main crystalline decomposition product.  相似文献   

2.
3.
Single crystals of potassium iron hydrogen phosphate, KFe3(HPO4)2(H2PO4)6 · 4 H2O, were prepared hydrothermally by heating a mixture of Fe2O3, H3PO4 and K2CO3 with a small amount of water. It crystallizes monoclinic, space group C2/c (N° 15 Int. Tab.) with Z = 4 and a = 1701(2), b = 960.4(5), c = 1750(1) pm, β = 90.88(7)°. The crystal structure was solved by using 1716 unique reflections F0 > 4σ(F0) with a final wR2 value of 0.126 (SHELXL-93). The main feature of the crystal structure are layers formed by PO4-tetrahedra around the FeO6-octahedra parallel to (001). K+ and H2O molecules connect these layers. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), Charge Distribution (CHARDI) and the Madelung Part of Lattice Energy (MAPLE) are calculated for the title compound. The existence of hydrogen bonds is confirmed by these calculations.  相似文献   

4.
New potassium silver vanadate KAg11(VO4)4 was obtained by reacting the stoichiometric mixture of Ag2O and V2O5 at elevated oxygen pressure, adding a small portion of aqueous KOH. The synthesis was done at 573 K and 430 MPa of oxygen pressure. The crystal structure was solved by direct methods basing on single crystal diffraction data (Pbca, Z = 4, a = 16.533(1), b = 10.6286(7), c = 10.5452(7) Å, 3983 independent reflections, R1 = 5.4 %). The optical band gap for KAg11(VO4)4 was determined as 2.0 eV. According to magnetic measurements, KAg11(VO4)4 is diamagnetic.  相似文献   

5.
Li2CuII5(PO4)4 has been obtained by various reactions starting from copper or Cu2O. Crystallization was achieved using I2 as oxidant and mineralizer. The new orthophosphate crystallizes in space group P$\bar{1}$ , Z = 2, with a = 6.0502(3) Å, b = 9.2359(4) Å, c = 11.4317(5) Å, α = 75.584(2)°, β = 80.260(2)°, γ = 74.178(2)°, at 293 K. Its structure has been determined from X‐ray single‐crystal data and refined to R1 = 0.022{wR2 = 0.058 for 4633 unique reflections with Fo > 4σ (Fo)}. From magnetic measurements μeff = 1.51 μB/Cu and θP = –37.4 K have been determined. The Vis/NIR spectrum of aqua‐green Li2Cu5(PO4)4 shows a single broad band centered around $\bar{1}$ = 12000 cm–1. Magnetic behavior and spectrum are discussed within the angular overlap model.  相似文献   

6.
NH4ZnPO4的非水合成与晶体结构   总被引:3,自引:2,他引:3  
从非水体系中制得NH4ZnPO4单晶,并用X线测定了晶体结构;晶体属六方晶系,P63空间群,晶胞参数;a=1.0688(2)nm,c=8706(2)nm,Z=8,Dc=2.751g.cm^-3,结构中的锌和磷均为四面体本位,且严格交替排列,无Zn-O-Zn和P-O-P联结方式。  相似文献   

7.
The new ternary calcium indium(III) phosphate CaIn2(PO4)2(HPO4) with mixed octahedral-tetrahedral framework was synthesized through hydrothermal reaction of stoichiometric amounts of CaO and InCl3 with excess of H3PO4 and H2O at pH = 1. Single crystal x-ray diffraction studies show the compound to crystallize in monoclinic symmetry, space group P21/n (#14) with a = 657.08(6), b = 2023.7(2), c = 665.72(7) pm, β = 91.20(1)°, Z = 4 and R = 0.043. The framework is built up of dimers of edge-sharing InO6 octahedra forming In2O10 units sharing all their OXO ligands with PO4 tetrahedra, and HPO4 groups.  相似文献   

8.
Single crystals of KBaNbS4 have been prepared by the reaction of Nb with an in situ formed melt of K2S3, BaS, and S at 500 °C. Satellite reflections observed in X‐ray diffraction experiments of these crystals indicate the presence of a one‐dimensional lattice distortion. The modulated structure has been solved and refined from X‐ray data using the superspace group approach. KBaNbS4 can be described in the (3 + 1)‐dimensional superspace group Pnma(α00)0s0 with lattice parameters a = 9.187(1), b = 7.001(1), and c = 12.494(1) Å and a modulation vector q = (0, 0.629(1), 0). In the structure the NbS4 tetrahedra are stacked along the a axis and show a slight tilting against each other. The K+ and Ba2+ ions follow this tilting, both are slightly shifted from their positions in the average structure. The modulation does not lead to a significant change in the coordination spheres of the metal atoms. The small effects of the modulation correspond to the relatively weak intensities of the satellite reflections. Results of temperature dependent X‐ray investigations indicate that K+ librates at higher temperatures and the surrounding S2? anions follow this motion. With decreasing temperature the libration of K+ is reduced and the coordination geometry freezes under formation of an incommensurate modulation. The heavier Ba and Nb atoms are also affected by positional modulation of the substructure and accommodate to their environment.  相似文献   

9.
用乙二胺作模板剂在水热条件下合成出一个新的三维开放骨架结构的亚磷酸铟[In2(HPO3)4]·(NH3CH2CH2NH3)(1), 并对其晶体结构进行了测定和表征.  相似文献   

10.
The α and β modifications of NH4HPO3F were synthesized and characterized with single crystal X‐ray diffraction. The crystal structure of α‐NH4HPO3F determined at 180 K is monoclinic, space group P21/n, with a = 7.4650(1), b = 15.586(2), c = 7.5785(9) Å, β = 108.769(9)°, V = 834.9(2) Å3, Z = 8, and R1 = 0.0376 and wR2 = 0.0818. β‐NH4HPO3F measured at 310 K crystallizes in the triclinic space group, P 1, with a = 7.481(1), b = 7.511(1), c = 7.782(1) Å, α = 84.31(1), β = 84.20(1), γ = 68.67(2)°, V = 404.31(9) Å3, Z = 4, and R1 = 0.0254 and wR2 = 0.0735. A phase transition was not observed between 180 and 310 K for β‐NH4HPO3F. Both modifications of NH4HPO4F consist of HPO3F and NH4+ units. Two pairs of two unique anions are linked to each other by O–H…O hydrogen bonds to form cyclic tetramers held together by N–H…O bonds. No O–H…F or N–H…F bonds were observed.  相似文献   

11.
12.
By adding piperazine to a hydrofluoric and phosphoric acid solution of Manganese(III) fluoride, the fluoride phosphate (pipzH2)[MnF2(HPO4)(H2O)](H2PO4) can be crystallized. Its structure is built by piperazinium(2+) cations, (H2PO4)? anions, and an anionic double‐chain of [HPO4] tetrahedra and [MnO3F2(H2O)] octahedra. The structure is triclinic, space group P , Z = 2, a = 622.97(4), b = 923.46(6), c = 1183.62(7) pm, α = 98.343(6)°, β = 100.747(7)°, γ = 107.642(5)°, R = 0.0289. It is worth noting that a ferrodistortive Jahn‐Teller order is observed with [MnO3F2(H2O)] octahedra strongly elongated along the F–Mn–OH2 axes perpendicular to the chain plane. The structure is stabilized by very strong hydrogen bonds.  相似文献   

13.
Thesynthesisofcrystallinezirconiumphosphateswasfirstreportedinl964byClearfieldandStynes['J,whodeterminedtheformulaasZr(HPO,),.H,O(a-ZrP)basedonchemicalcomposition,dehydrationandion-exchangebe-haviour'Sincethen,manyothercrystallinezirconiumphosphate,suchasZr(HPO,)(g-ZrP),Zr(HPO'),.H,O(Y-ZrP),havebeenprepared['.'1.Thesephosphatesconsistedofalternate,cross-linkedlayersofZrO,octahedraandPO'tetrahedrawithwatermoleculesaccommodatedininterlamellarfashion.a-Zirco-niumphosphate,Zr(HPO'),.…  相似文献   

14.
C4H8N2H4·Zn(HPO3)2的水热合成和结构表征   总被引:5,自引:5,他引:5  
在过去的十几年中 ,人们对含有机模板的、由 Zn O4 四面体和 PO4 四面体基本结构单元组成的磷酸锌盐进行了深入广泛的研究 ,发现其结构具有多样性 [1] .近年来 ,人们又开始探索用亚磷酸氢根( HPO3)替代磷酸根 ( PO4 ) ,形成结构新颖的含有机模板的亚磷酸盐 .与磷酸根相比 ,亚磷酸氢根只能与 3个邻近的阳离子通过 P— O— M( M=Zn等 )键相连 ,结构同 [PO3( OH) ]相似 .鉴于此 ,HPO3完全可以作为搭建空旷骨架化合物的结构基元 .与磷酸盐的研究相比 ,以有机胺为模板的过渡金属亚磷酸盐合成研究相对较少 .Harrison等 [2 ,3] 报道了通过…  相似文献   

15.
Crystal structure of a new silver phosphate-tellurate: Te(OH)6 · 2Ag2HPO4 has been solved using 2534 X-ray reflections with a final R value: 0.048. This salt is monoclinic, P21/n with a bimolecular unit cell:a = 5.950(3), b = 20.52(1), c = 5.829(3) Å, β = 119.89(5°). As in the already described phosphate-tellurates the main feature of this crystal structures is the coexistence in the same crystal of two different types of anions: TeO6 octahedra and PO4 tetrahedra.  相似文献   

16.
[WS4Cu2(Py)4]的合成及晶体结构   总被引:4,自引:0,他引:4  
(NH_4)_2WS_4、CuCl和(n-Bu)_4NBr在Ar气氛中,90℃下反应10 h,所得产物先后经CH_2Cl_2与CH_3OH处理,得一桔红色晶体。该晶体与吡啶反应,即得到桔红色针状晶体[WS_4Cu_2(Py)_4],属单斜晶系,空间群C2/c,晶胞参数:a=14.109(1),b=12.704(1),c=14.071(1);β=96.97(1)°;Z=4。结构用重原子法解出,经最小二乘法修正,偏离因子R=0.027。  相似文献   

17.
The new quinary fluoride‐rich rubidium scandium oxosilicate Rb3Sc2F5Si4O10 was obtained from mixtures of RbF, ScF3, Sc2O3 and SiO2 in sealed platinum ampoules after seventeen days at 700 °C. The colourless compound crystallises orthorhombically in space group Pnma with a = 962.13(5), b = 825.28(4), c = 1838.76(9) pm and Z = 4. For the oxosilicate partial structure, [SiO4]4– tetrahedra are connected in (001) by vertex‐sharing to form corrugated unbranched vierer single layers ${2}\atop{{\infty}}$ {[Si4O10]4–} (d(Si–O) = 158–165 pm, ∠(O–Si–O) = 103–114°, ∠(Si–O–Si) = 125–145°) containing six‐membered rings. Similar oxosilicate layers with 63‐net topology are well‐known for the mineral group of micas or in sanbornite Ba2Si4O10. Regarding other systems, identical tetrahedral layers can be found in the synthetic borophosphate Mg(H2O)2[B2P2O8(OH)2] · H2O. The Sc3+ cations are coordinated octahedrally by four F and two O2– anions. These cis‐[ScF4O2]5– octahedra (d(Sc–F) = 200–208 pm, d(Sc–O) = 202–205 pm) share one equatorial and two apical F anions with others to build up slightly corrugated ${1}\atop{{\infty}}$ {[Sc2F${t}\atop{2/1}$ F${v}\atop{6/2}$ O${t}\atop{4/1}$ ]7–} double chains along [010]. These are linked with the oxosilicate layers via two oxygen vertices to construct a three‐dimensional framework with cavities apt to host the three crystallographically independent Rb+ cations with coordination numbers of eleven, twelve and thirteen.  相似文献   

18.
During attempts to synthesize the rubidium dicopper triscandium hexatelluride RbCu2Sc3Te6 in analogy to CsCu2Sc3Te6 from 2:3:6‐molar mixtures of the elements (Cu, Sc and Te) with an excess of RbBr as flux and rubidium source, after 14 days at 900 °C in torch‐sealed evacuated silica tubes brown lath‐shaped crystals of RbSc5Te8 did form instead. This new compound crystallizes monoclinically in space group C2/m (no. 12) with two formula units in a unit cell of the dimensions a = 2130.61(9) pm, b = 413.94(2) pm, c = 1022.03(5) pm and β = 104.392(4)°. The crystal structure of RbSc5Te8 consists of a three‐dimensional anionic framework of face‐, edge‐ and vertex‐sharing [ScTe6]9− octahedra that provides one‐dimensional tunnels with a distorted square shape. For charge compensation they are occupied with Rb+ cations (CN = 10) coordinated in a trans‐face bicapped cubic fashion by Te2− anions.  相似文献   

19.
In recent years, the mixed-metal cluster were studies extensively. Hundreds of M-Mo(W)-S clusters have been synthesized1. But only two Hg-W-S clusters [PPh4]2[HgWS4L2].0.5 MeCHO (L= CH=CH2 2 or C(CH 3)2 were reported. We tried to synthesize i-mnt-Hg-Mo(W)-S cluster by using isomaleonitrile dithiolate (i-mnt=1,1dicyano-2,2-ethylene-dithiolato), but obtained (Bu4N)2Hg(i-mnt)2. The synthesis and structure of [Hg(i-mnt)2]2- are reported in this paper, and compared to other M-i-mnt co…  相似文献   

20.

The combination of iminodiacetic acid (H2ida) with cobalt(II) chloride hexahydrate in the presence of sodium hydroxide, followed by heating, produces the trans-facial isomer of K[Co(ida)2]·2H2O. This compound contains extensive intermolecular and intramolecular coordination and hydrogen bonding involving the potassium ions, and results in a complex three-dimensional structure in which each potassium ion is immediately surrounded by six cobalt centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号