首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper results are presented from fluorescence‐yield X‐ray absorption fine‐structure spectroscopy measurements with a new seven‐cell silicon drift detector (SDD) module. The complete module, including an integrated circuit for the detector readout, was developed and realised at DESY utilizing a monolithic seven‐cell SDD. The new detector module is optimized for applications like XAFS which require an energy resolution of ~250–300 eV (FWHM Mn Kα) at high count rates. Measurements during the commissioning phase proved the excellent performance for this type of application.  相似文献   

2.
An energy‐dispersive X‐ray absorption spectroscopy beamline mainly dedicated to X‐ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending‐magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set‐up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr‐doped manganites and the structural deformation in nickel perovskites under high applied pressure.  相似文献   

3.
A new data collection strategy for performing synchrotron energy‐dispersive X‐ray diffraction computed tomography has been devised. This method is analogous to angle‐dispersive X‐ray diffraction whose diffraction signal originates from a line formed by intersection of the incident X‐ray beam and the sample. Energy resolution is preserved by using a collimator which defines a small sampling voxel. This voxel is translated in a series of parallel straight lines covering the whole sample and the operation is repeated at different rotation angles, thus generating one diffraction pattern per translation and rotation step. The method has been tested by imaging a specially designed phantom object, devised to be a demanding validator for X‐ray diffraction imaging. The relative strengths and weaknesses of the method have been analysed with respect to the classic angle‐dispersive technique. The reconstruction accuracy of the method is good, although an absorption correction is required for lower energy diffraction because of the large path lengths involved. The spatial resolution is only limited to the width of the scanning beam owing to the novel collection strategy. The current temporal resolution is poor, with a scan taking several hours. The method is best suited to studying large objects (e.g. for engineering and materials science applications) because it does not suffer from diffraction peak broadening effects irrespective of the sample size, in contrast to the angle‐dispersive case.  相似文献   

4.
Equations for the calculation of the dimensions of a gauge volume, also known as the active volume or diffraction lozenge, in an energy‐dispersive diffraction experiment where the detector is collimated by two ideal slits have been developed. Equations are given for equatorially divergent and parallel incident X‐ray beams, assuming negligible axial divergence.  相似文献   

5.
A single‐crystal momentum‐resolved resonant inelastic X‐ray scattering (RIXS) experiment under high pressure using an originally designed diamond anvil cell (DAC) is reported. The diamond‐in/diamond‐out geometry was adopted with both the incident and scattered beams passing through a 1 mm‐thick diamond. This enabled us to cover wide momentum space keeping the scattering angle condition near 90°. Elastic and inelastic scattering from the diamond was drastically reduced using a pinhole placed after the DAC. Measurement of the momentum‐resolved RIXS spectra of Sr2.5Ca11.5Cu24O41 at the Cu K‐edge was thus successful. Though the inelastic intensity becomes weaker by two orders than the ambient pressure, RIXS spectra both at the center and the edge of the Brillouin zone were obtained at 3 GPa and low‐energy electronic excitations of the cuprate were found to change with pressure.  相似文献   

6.
An end‐station for resonant inelastic X‐ray scattering and (resonant) X‐ray emission spectroscopy at beamline ID20 of ESRF – The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high‐energy‐resolution applications, including partial fluorescence yield or high‐energy‐resolution fluorescence detected X‐ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non‐resonant inelastic X‐ray scattering measurements of valence electron excitations.  相似文献   

7.
An X‐ray magnetic circular dichroism experiment under multiple extreme conditions, 2 ≤T≤ 300 K, H≤ 10 T and P≤ 50 GPa, has been achieved at SPring‐8 BL39XU. A combination of the high‐brilliant X‐ray beam and a helicity‐controlled technique enabled the dichroic signal to be recorded with high accuracy. The performance is shown by the outcome of pressure‐induced ferromagnetism in Mn3GaC and the pressure‐suppressed Co moment in ErCo2. Two technical developments, a tiny diamond anvil cell inserted into a superconducting magnet and in situ pressure calibration using 90° Bragg diffraction from a NaCl marker, are also presented. X‐ray magnetic spectroscopy under multiple extreme conditions is now opening a new approach to materials science.  相似文献   

8.
A recently developed portable multi‐anvil device for in situ angle‐dispersive synchrotron diffraction studies at pressures up to 25 GPa and temperatures up to 2000 K is described. The system consists of a 450 ton V7 Paris–Edinburgh press combined with a Stony Brook `T‐cup' multi‐anvil stage. Technical developments of the various modifications that were made to the initial device in order to adapt the latter to angular‐dispersive X‐ray diffraction experiments are fully described, followed by a presentation of some results obtained for various systems, which demonstrate the power of this technique and its potential for crystallographic studies. Such a compact large‐volume set‐up has a total mass of only 100 kg and can be readily used on most synchrotron radiation facilities. In particular, several advantages of this new set‐up compared with conventional multi‐anvil cells are discussed. Possibilities of extension of the (P,T) accessible domain and adaptation of this device to other in situ measurements are given.  相似文献   

9.
10.
Assembling a diamond anvil cell for high‐pressure measurements involves placing in a gasket hole the sample of interest, a pressure transmitting fluid, and a material for pressure calibration. In this communication, we propose the use of ionic liquids containing the bis(trifluoromethylsulfonyl)imide anion ([Tf2N]), [(CF3SO2)2 N], as a simultaneous pressure transmitting and calibrant material for high‐pressure Raman spectroscopy measurements of solid samples that are not soluble in ionic liquids. The position of the characteristic Raman band of the [Tf2N] anion at 740 cm−1 exhibits linear frequency shift for pressures up to 2.5 GPa. High‐pressure Raman spectra of different ionic liquids containing the same anion indicate that the actual magnitude of the pressure‐induced frequency shift of the [Tf2N] normal mode depends on the counterion, the typical shift being 4.2 cm−1/GPa. Ionic liquids based on the [Tf2N] anion are also good pressure transmitting mediums because hydrostatic condition is kept at high pressure, and no crystallization is observed up to 4.0 GPa. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A cell for the investigation of interfaces under pressure is presented. Given the pressure and temperature specifications of the cell, P≤ 100 bar and 253 K ≤T≤ 323 K, respectively, high‐energy X‐rays are required to penetrate the thick Al2O3 windows. The CH4(gas)/H2O(liquid) interface has been chosen to test the performance of the new device. The measured dynamic range of the high‐energy X‐ray reflectivity data exceeds 10?8, thereby demonstrating the validity of the entire experimental set‐up.  相似文献   

12.
Core–shell X‐ray emission spectroscopy (XES) is a valuable complement to X‐ray absorption spectroscopy (XAS) techniques. However, XES in the hard X‐ray regime is much less frequently employed than XAS, often as a consequence of the relative scarcity of XES instrumentation having energy resolutions comparable with the relevant core‐hole lifetimes. To address this, a family of inexpensive and easily operated short‐working‐distance X‐ray emission spectrometers has been developed. The use of computer‐aided design and rapid prototype machining of plastics allows customization for various emission lines having energies from ~3 keV to ~10 keV. The specific instrument described here, based on a coarsely diced approximant of the Johansson optic, is intended to study volume collapse in Pr metal and compounds by observing the pressure dependence of the Pr Lα emission spectrum. The collection solid angle is ~50 msr, roughly equivalent to that of six traditional spherically bent crystal analyzers. The miniature X‐ray emission spectrometer (miniXES) methodology will help encourage the adoption and broad application of high‐resolution XES capabilities at hard X‐ray synchrotron facilities.  相似文献   

13.
Radiolysis‐induced effects on aqueous tungsten ions are observed to form a precipitate within seconds upon exposure to a synchrotron X‐ray micro‐beam in a WO3 + H2O system at 873 K and 200 MPa. In situ Fe K‐edge energy‐dispersive X‐ray absorption spectroscopy (ED‐XAS) measurements were made on Fe(II)Cl2 aqueous solutions to 773 K in order to study the kinetics of high‐temperature reactions of Fe2+ and Fe3+ ions with transient radiolysis species. The radiolytic reactions in a fluid sample within a hydrothermal diamond anvil cell result in oxidation of the Fe2+ ion at 573 K and reduction of Fe3+ at temperatures between 673 and 773 K and of the Fe2+ ion at 773 K. The edge‐energy drift evident in the ED‐XAS data directly reflects the kinetics of reactions resulting in oxidation and/or reduction of the Fe2+ and Fe3+ ions in the aqueous solutions at high temperatures. The oxidation and reduction trends are found to be highly consistent, making reliable determinations of reaction kinetics possible.  相似文献   

14.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Changes in the band position of the 462 and the 1111 cm–1 A1 modes of berlinite (AlPO4) with temperature and pressure were determined in situ to 500°C and to 10 GPa using Raman spectroscopy and diamond‐anvil cells. These bands shift in opposite directions with pressure and, likewise, with temperature. At a known temperature, the relative difference of both band positions (Δν)P,T can therefore be used as a pressure gauge that does not require calibration of the spectrometer. At ambient pressure, the observed temperature dependence of this relative difference of the line positions is very close to linear and can be described by (Δν)T, 0.1 MPa (cm–1) = 0.0181 T – 0.46 where 23 ≤ T (°C) ≤ 500. Along the 23°C isotherm to 10 GPa, pressure and relative wavenumber difference (Δν)P, 23°C are related by the equation P (GPa) = 0.00083 [(Δν)P, 23°C]2 – 0.062 (Δν)P, 23°C. Both equations can be combined to determine pressures at higher temperatures under the assumption that the change in (Δν)P,T with pressure is insensitive to temperature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A commercial fuel cell has been successfully modified to carry out X‐ray absorption spectroscopy (XAS) measurements under optimized in operando conditions. The design is conceived for the performance of XAS experiments in transmission mode over a wide range of X‐ray energies above 6 keV, owing to the reduced absorption of the cell. The wide angular aperture allows the collection of XAS in fluorescence mode and of X‐ray diffraction patterns when needed. Details of the design of the cell and its performances are given. The quality of the extended X‐ray absorption fine‐structure spectra under working conditions has been verified at the ESRF and ELETTRA synchrotron radiation facilities, showing that relatively fast and low‐noise transmission measurements on electrodes over a wide range of catalyst concentrations and energies are feasible.  相似文献   

17.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

18.
Raman studies of nanotubes under pressure have been a lively area of research. However, the results are not always as expected and at times have not been adequately explained. One example of the diversity of the results is the higher energy Raman mode (the graphitic mode, GM) shift to higher wavenumber under pressure. Here we report a new high‐pressure Raman study showing that the effects of the variation in the tube diameters and the pressure transmitting medium are both crucial for understanding the outcomes of such high‐pressure experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A new setup and commissioning of transient X‐ray absorption spectroscopy are described, based on the high‐repetition‐rate laser pump/X‐ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high‐repetition‐rate and high‐power laser is incorporated into the setup with in‐house‐built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser‐on and laser‐off signals simultaneously. The capability of picosecond transient X‐ray absorption spectroscopy measurement was demonstrated for a photo‐induced spin‐crossover iron complex in 6 mM solution with 155 kHz repetition rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号