首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Poly(styrene) (PS), poly(2,3,4,5,6‐pentafluorostyrene) (5FPS) and their random copolymers were prepared by bulk radical polymerization. The spin‐cast polymer films of these polymers were analyzed using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The surface and bulk compositions of these copolymers were found to be same, implying that surface segregation did not occur. The detailed analysis of ToF‐SIMS spectra indicated that the ion fragmentation mechanism is similar for both PS and 5FPS. ToF‐SIMS quantitative analysis using absolute peak intensity showed that the SIMS intensities of positive styrene fragments, particularly C7H7+, in the copolymers are higher than the intensities expected from a linear combination of PS and 5FPS, while the SIMS intensities of positive pentafluorostyrene fragments are smaller than expected. These results indicated the presence of matrix effects in ion formation process. However, the quantitative approach using relative peak intensity showed that ion intensity ratios are linearly proportional to the copolymer mole ratio when the characteristic ions of PS and 5FPS are selected. This suggests that quantitative analysis is still possible in this copolymer system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This report provides detailed experimental results of thermal and surface characterization on untreated and surface‐treated halloysite nanotubes (HNTs) obtained from two geographic areas. Surface characterization techniques, including XPS and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used. ToF‐SIMS surface analysis experiments were performed with both atomic and cluster ion beams. Higher ion yields and more high‐mass ions were obtained with the cluster ion beams. Static ToF‐SIMS spectra were analyzed with principal component analysis (PCA). Morphological diversities were observed in the samples although they mainly contained tubular structures. Thermogravimetric data indicated that aqueous hydrogen peroxide solution could remove inorganic salt impurities, such as alkali metal salts. The amount of grafting of benzalkonium chloride of HNT surface was determined by thermogravimetic analysis. PCA of ToF‐SIMS spectra could distinguish the samples mined from different geographical locations as well as among surface‐treated and untreated samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The surface composition of amorphous Finemet, Fe73Si15.8B7.2Cu1Nb3, was studied by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The as‐received sample in the original state and after Ar+ sputter‐cleaning was analyzed at room temperature as well as after cooling to ? 155 °C. In the cooled state, the surface oxide layer composed of oxides of the alloy constituents was found to become enriched with elemental iron and depleted of elemental silicon, boron, oxygen and carbon as compared to the state at room temperature. Interaction of residual water vapor and hydrogen with the complex oxide layer occurring at low temperatures is believed to be responsible for the enhanced formation of surface hydroxides of the alloy constituents. The processes resulting in the observed redistribution of the elements on the surface of Finemet at low temperatures are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used to study the surface composition and electronic structure of Finemet, Fe73Si15.8B7.2Cu1Nb3, in the original amorphous state and after gradual heating in vacuum to a temperature of 400 °C and cooling back to room temperature. It was found that relaxation processes occurring during heat treatment well below the crystallization onset caused the physico‐chemical state of Finemet surface to change irreversibly. In the relaxed alloy, the surface originally covered with the native air‐formed oxide was significantly enriched with elemental iron and depleted of other alloy constituents compared with the original state. Yet in the as‐quenched state, clustering of copper atoms on the Finemet surface was detected which was enhanced by heating. The thermal treatment resulted in the selective reduction of iron oxides and caused noticeable changes in the valence band structure and the Fe L3VV Auger spectrum associated with atomic redistribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A series of low‐density polyethylene (LDPE) surfaces, chemically modified using a number of oxidative techniques employed for adhesion enhancement (pretreatments), have been studied by time‐of‐flight (ToF) SIMS and XPS. The methods consisted of corona discharge, flame, electrochemical, chromic acid, acid dichromate and acid permanganate treatment. All except flame treatment were performed under mild and fairly severe conditions to yield a range of surface chemistries. The XPS analysis, using high energy resolution and a refined approach to C 1s curve‐fitting, provided some new insights into the quantitative assessment of the type and concentration of functional groups. Both positive and negative ion ToF‐SIMS spectra were obtained at high mass resolution. The oxygen‐containing fragments were identified by accurate mass analysis and subjected to a detailed comparison with the XPS results. No convincing relative intensity correlations could be identified that would allow particular secondary ion fragments to be associated strongly with particular functional groups (in this multi‐functional surface situation). Inorganic residues resulting from wet chemical treatments were also investigated and here the two techniques were found to be more complementary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

7.
An important aspect of the robustness of an electronic device is its ability to resist water, fingerprints, dirt, and smudges that may compromise its ability to function and/or the information within it. Here, we report a chemical analysis by ToF‐SIMS, wetting, and XPS of the surfaces in a commercially available Apple iPod nano (8GB, MC525LL/A), which showed good resistance to its environment. This analysis reveals that the front panel (touchscreen) of the device is coated with a low free energy fluorinated polymer that may consist of short segments of a fluorinated hydrocarbon connected through ether linkages. No other part of the device appears to have this hydrophobic coating. A plasma treatment of the device leads to a deterioration of its performance. This work demonstrates how different analytical techniques can complement each other and contribute to a better understanding of a surface or a material. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this work a new class of ionomeric block perfluropolyether (PFPE) polyurethanes are presented; these polymers are obtained in the form of aqueous dispersions due to the presence of hydrophilic sites (ionomeric groups such as acetates or trialkylammonium salts) along the macromolecular chain, offering the chance to combine PFPEs in a variety of possible structures for coating or surface treatments with an environmentally friendly use. X‐ray photoelectron spectroscopy analysis at two different sampling depths, as well as time‐of‐flight secondary ion mass spectrometry analysis modelled by the use of principal component analysis (PCA), were used to investigate the first nanometres of the surface samples. It resulted in a clear surface enrichment in fluorine, and the different extent of the fluorine stratification will be discussed in relation to the ionic character, film‐forming from water and cross‐linking. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The oxidation of iron (Fe) by water (D2O) vapour at low pressures and room temperature was investigated using time‐of‐flight (ToF) SIMS. The results supported those found previously using XPS and the QUASES? program in that a duplex oxide structure was found containing a thin outer surface hydroxide (Fe(OD)2) layer over an inner oxide (FeO) layer. The extraordinary depth resolution of the ToF‐SIMS profiles assisted in identifying the two phases; this resolution was achieved by compensation for surface roughness. A substantial concentration of deuterium was found in the subsurface oxide layer. This observation confirmed previous assessments that the formation of FeO was from the reaction of Fe(OD)2 with outward‐diffusing Fe, leaving deuterium as a reaction product. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Peak‐fitting has been performed on a series of peaks obtained by time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) analysis in order to assess whether information may be obtained from this procedure on the samples' characteristics. A variety of samples were examined including a range of treatments for aluminium leading to different surface roughnesses, polymer films with a range of polydispersities, molecular weight (MW) and thicknesses as well as aluminium samples with adsorbed adhesion promoters on the surface. Variation of peak‐fitting was assessed by varying the peak intensity, full width at half maximum (FWHM) and peak asymmetry. Although further studies are needed it is possible to say that the peak width increases with roughness whereas peak asymmetry seems to be related to oxide thickness. Polymer characteristics do not seem to influence the width whereas the peak asymmetry increases either versus MW or polydispersity. A possible assumption is that the peak asymmetry relates to the ion formation processes. Additional work with varying polymer films thickness indicates that both FWHM and peak asymmetry may be related to sample charging and this could be used for assessment of film thicknesses. Finally, peak‐fitting was used to obtain a more reliable peak area when peaks are too close in mass to use current methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Lacquer has been used in Asian countries for thousands of years as a natural coating material owing to its durable, adhesive, decorative, and protective properties. Protection and restoration of lacquer‐coated cultural remains has become an important subject, and identification of the lacquer types in old lacquer‐wares has also become very important for conservation and restoration research. This paper provides identification of several molecular species of vegetal‐source Asian lacquers with the aim of providing a methodology for application in the field of cultural heritage. Several chemical markers of the vegetal species in Asian lacquers were identified using a methodology consistent with the sampling restrictions required for cultural‐heritage objects. Surface analytical methods such as time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were used to characterize Korean, Chinese, and Vietnamese lacquers; avoiding time‐consuming and destructive extraction processes. These ToF‐SIMS results provided the structural characterization of a series of catechol derivatives. The ToF‐SIMS spectra of Rhus vernicifera from Korea and China, and Rhus succedanea from Vietnam indicated a series of urushiol and laccol repeat units, respectively, in the mass range of m/z 0–1800. Because of its sensitivity, specificity, and speed of analysis, the ToF‐SIMS technique can be used to investigate cultural lacquer‐coated treasures as well as to discriminate among different Asian lacquer coatings or binding mediums for the conservation or restoration of lacquer‐ware. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Cluster LMIGs are now regarded as the standard primary ion guns on time‐of‐flight secondary ion mass spectrometers (ToF‐SIMS). The ToF‐SIMS analyst typically selects a bombarding species (cluster size and charge) to be used for material analysis. Using standard data collection protocols where the analyst uses only a single primary bombarding species, only a fraction of the ion‐beam current generated by the LMIG is used. In this work, we demonstrate for the first time that it is possible to perform ToF‐SIMS analysis when all of the primary ion intensity (clusters) are used; we refer to this new data analysis mode as non‐mass‐selected (NMS) analysis. Since each of the bombarding species has a different mass‐to‐charge ratio, they strike the sample at different times, and as a result, each of the bombarding species generates a spectrum. The resulting NMS ToF‐SIMS spectrum contains contributions from each of the bombarding species that are shifted in time. NMS spectra are incredibly complicated and would be difficult, if not impossible, to analyze using univariate methodology. We will demonstrate that automated multivariate statistical analysis (MVSA) tools are capable of rapidly converting the complicated NMS data sets into a handful of chemical components (represented by both spectra and images) that are easier to interpret since each component spectrum represents a unique and simpler chemistry. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Nitrilotris(methylene)triphosphonic acid (NP) is a technologically important molecule that has been used for years as a corrosion inhibitor and/or adhesion promoter on aluminum and other metal surfaces. However, to the best of our knowledge, the detailed surface characterization of NP adsorbed on aluminum, or on any other surface, has not been reported. Herein, we report an X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) analysis of a series of untreated and NP‐coated aluminum substrates that were exposed to the downstream products of a fluoroalkane + oxygen plasma for different amounts of time (from 0 to 20 s). As indicated by P 2p, N 1s, Al 2p, O 1s, and F 1s narrow scans, even a 4‐s plasma treatment significantly damages the NP protective layer and converts the native aluminum oxide into aluminum oxyfluoride. Heat treatment of the fluorine plasma‐treated samples in the air substantially converts the aluminum oxyfluoride back to aluminum oxide, while similar heating under vacuum results in little change to the materials. A slow loss of fluorine from the samples occurs over the course of weeks when they are stored in the air. A ToF‐SIMS analysis reveals sets of signals that are consistent with no surface treatment, NP treatment, or fluorine plasma treatment. A principal component analysis of the negative ion ToF‐SIMS spectra from the samples shows the expected differentiation of the samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
ToF‐SIMS spectra are formed by bombarding a surface with a pulse of primary ions and detecting the resultant ionized surface species using a time‐of‐flight mass spectrometer. Typically, the detector is a time‐to‐digital converter. Once an ion is detected using such detectors, the detector becomes insensitive to the arrival of additional ions for a period termed as the (detector) dead‐time. Under commonly used ToF‐SIMS data acquisition conditions, the time interval over which ions arising from a single chemical species reach the detector is on the order of the detector dead‐time. Thus, only the first ion reaching the detector at any given mass is counted. The event registered by the data acquisition system, then, is the arrival of one or more ions at the detector. This behavior causes ToF‐SIMS data to violate, in the general case, the assumption of linear additivity that underlies many multivariate statistical analysis techniques. In this article, we show that high‐mass‐resolution ToF‐SIMS spectral‐image data follow a generalized linear model, and we propose a data transformation and scaling procedure that enables such data sets to be successfully analyzed using standard methods of multivariate image analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Layer‐by‐layer assemblies consisting of alternating layers of nitrilotris(methylene)triphosphonic acid (NTMP), a polyfunctional corrosion inhibitor, and zirconium(IV) were prepared on alumina. In particular, a nine‐layer (NTMP/Zr(IV))4NTMP stack could be constructed at room temperature, which showed a steady increase in film thickness throughout its growth by spectroscopic ellipsometry up to a final thickness of 1.79 ± 0.04 nm. At higher temperature (70 °C), even a two‐layer NTMP/Zr(IV) assembly could not be prepared because of etching of the alumina substrate by the heated Zr(IV) solution. XPS characterization of the layer‐by‐layer assembly showed a saw tooth pattern in the nitrogen, phosphorus, and zirconium signals, where the modest increases and decreases in these signals corresponded to the expected deposition and perhaps removal of NTMP and Zr(IV). Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed the attachment of the NTMP molecule to the surface through PO?, PO2?, PO3?, and CN? signals. Increasing attenuation of the Al signal from the substrate after deposition of each layer was observed by both XPS and ToF‐SIMS. Essentially complete etching of the alumina by the heated Zr(IV) solution was confirmed by spectroscopic ellipsometry, XPS, and ToF‐SIMS. Atomic force microscopy revealed that all the films were smooth with Rq roughness values less than 0.5 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The surface chemistry of a range of random poly l‐lactide‐co‐glycolide (PLGA) materials has been investigated using XPS, static secondary ion mass spectrometry (SSIMS) and gentle secondary ion mass spectrometry (G‐SIMS). The estimated mole fraction of lactide units provided by SSIMS was in good agreement with bulk composition and appeared not to have been affected by contamination. Conversely, XPS assessment of lactide compositions was unreliable due to hydrocarbon contamination contributions. In this study, we propose a novel model to demonstrate that by using SSIMS it is possible to infer the degree of trans‐esterification for PLGA co‐polymers synthesised from a mixture of lactide and glycolide homo‐dimers. This was determined by introducing two independent parameters, the ratio of trans‐esterified bonds to the total number of ester bonds, PT, and the lactide composition. The model has indicated that, for this set of polymers, PT was approximately 0.25. Furthermore, we have demonstrated that G‐SIMS successfully identified the structurally important key fragments leading to direct identification. Analysis by G‐SIMS showed that the glycolic acid units from all PLGA compositions are emitted in a lower energy‐fragmentation process than lactic acid units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We investigate the mechanism of polydimethylsiloxane (PDMS) surface modification by 172‐nm vacuum ultraviolet (VUV) light. Time‐of‐flight secondary ion mass spectrometry and optical spectrometry are used to measure the chemical composition and VUV transmittance of the PDMS before and after surface modification, respectively. For modified samples of bulk PDMS, the VUV transmittance and the depth of the modified region increased with increasing VUV dose. This can be explained by the following self‐reinforcing cycle of (1) modification of PDMS by VUV light to a more silica‐like composition, (2) improvement of the VUV light transparency, and (3) deeper modification. For thin‐film samples of PDMS formed on sapphire substrates, the transmittance at 172 nm also increased with increasing VUV dose and exceeded that of sapphire in the region from 172 to 300 nm. Finally, thin‐film samples of PDMS formed on silicon substrates, which function as a VUV reflector, were also investigated. For these samples, the secondary ion depth profiles for several chemical species in the PDMS were oscillatory, probably due to the interference of the incident and reflected VUV light. These results strongly suggest that the photon energy of the VUV light plays an important role in modifying PDMS.  相似文献   

18.
The design philosophy and implementation of an ultra high vacuum (UHV), PC controlled, automated in situ fracture stage for a surface analysis system is described. ToF‐SIMS spectra are shown to illustrate the improvement in spectral quality obtained from micro‐compact tension (CT) tests of polymer matrix fracture surfaces produced using the fracture stage in UHV compared to those obtained from a sample tested at air. This system is flexible in that by changing the capacity of the load cell it is possible to reduce or increase maximum loads as the specimen type and material demands. The stage has been designed with instrumental flexibility in mind, utilising commercial SEM‐stub type sample mounts, and can thus be used for AES/SAM and XPS investigations, as well as ToF‐SIMS analysis, in the authors' laboratory. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Time of flight secondary ion mass spectrometry (ToF‐SIMS) has been used to determine the extent of surface modification of highly ordered pyrolytic graphite (HOPG) samples that were exposed to radio‐frequency methane and hydrogen plasmas. The ToF‐SIMS measurements were examined with the multivariate method of principal component analysis (PCA), to maximise the amount of spectral information retained in the analysis. This revealed that the plasma (methane or hydrogen plasma) modified HOPG exhibited greater hydrogen content than the pristine HOPG. The hydrogen content trends observed from the ToF‐SIMS studies were also observed in elastic recoil detection analysis measurements. The application of the ToF‐SIMS PCA method also showed that small hydrocarbon fragments were sputtered from the hydrogen‐plasma‐treated sample, characteristic of the formation of a plasma‐damaged surface, whereas the methane‐plasma‐treated surface sputtered larger hydrocarbon fragments, which implies the growth of a polymer‐like coating. Scanning tunnelling microscopy measurements of the modified surfaces showed surface features that are attributable to either etching or film growth after exposure to the hydrogen or methane plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Hydrogen depth distributions in silicon, zinc oxide, and glass are of great interest in material research and industry. Time‐of‐flight SIMS has been used for hydrogen depth profiling for many years. However, some critical information, such as optimal instrumental settings and detection limits, is not easily available from previous publications. In this work, optimal instrumental settings and detection limits of hydrogen in silicon, zinc oxide, and common glass were investigated. The recommended experimental settings for hydrogen depth profiling using time‐of‐flight SIMS are: (i) keeping pressure in the analysis chamber as low as possible, (ii) using a cesium beam for sputtering and monitoring the H signal, (iii) employing monatomic ion analysis beams with the highest currents, and (iv) using interlace mode. In addition, monatomic secondary ions from a matrix are recommended as references to normalize the H signal. Detection limits of hydrogen are limited by the pressure of residual gases in the analysis chamber. The base pressure of the analysis chamber (with samples) is about 7 × 10?10 mbar in this study, and the corresponding detection limits of hydrogen in silicon, zinc oxide, and common glass are 1.3 × 1018 atoms/cm3, 1.8 × 1018 atoms/cm3, and 5.6 × 1018 atoms/cm3, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号