首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multistimuli responsive grafted poly(ether tert‐amine) (gPEAs), which were comprised of poly(propylene oxide) (PPO) in backbone and poly(ethylene oxide) (PEO) as grafted chain, were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial poly(propylene glycol) diglycidyl ether and Jeffamine L100. These gPEAs exhibit very sharp response to temperature, pH and ionic strength with tunable cloud point (CP). The CP of gPEA aqueous solution increases with increasing the PEO content or decreasing pH value, varying from 27 to 77 °C. Compared with linear PEA101, gPEA110 of completely grafted structure in aqueous solution exhibits sharper response to temperature with ΔT around 1 °C. The results obtained from TEM and dynamic light scattering reveal that gPEAs are dispersed as uniform sized nano‐micelles in aqueous at room temperature, which can further aggregate into mesoglobules of complex structure at high temperature (>CP). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6353–6361, 2009  相似文献   

2.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

4.
A series of poly(L ‐lysine)s grafted with aliphatic polyesters, poly(L ‐lysine)‐graft‐poly(L ‐lactide) (PLy‐g‐PLLA) and poly(L ‐lysine)‐graft‐poly(?‐caprolactone) (PLy‐ g‐PCL), were synthesized through the Michael addition of poly(L ‐lysine) and maleimido‐terminated poly(L ‐lactide) or poly(?‐caprolactone). The graft density of the polyesters could be adjusted by the variation of the feed ratio of poly(L ‐lysine) to the maleimido‐terminated polyesters. IR spectra of PLy‐g‐PCL showed that the graft copolymers adopted an α‐helix conformation in the solid state. Differential scanning calorimetry measurements of the two kinds of graft copolymers indicated that the glass transition temperature of PLy‐g‐PLLA and the melting temperature of PLy‐g‐PCL increased with the increasing graft density of the polyesters on the backbone of poly(L ‐lysine). Circular dichroism analysis of PLy‐g‐PCL in water demonstrated that the graft copolymer existed in a random‐coil conformation at pH 6 and as an α‐helix at pH 9. In addition, PLy‐g‐PCL was found to form micelles to vesicles in an aqueous medium with the increasing graft density of poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1889–1898, 2007  相似文献   

5.
Well‐defined amphiphilic block copolymers were prepared by ring opening metathesis polymerization and their stimuli responsive behavior of formed micelles in aqueous solution was investigated. The hydrophobic core of the micelles consists of either a poly[5,6‐bis(ethoxymethyl)bicyclo[2.2.1]hept‐2‐ene]‐block with a glass transition Tg at room temperature or a poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐diylbis (phenylmethanone)] with a Tg of 143 °C. For the polyelectrolyte shell, the precursor block poly[endo,exo[2.2.1]bicyclohept‐5‐ene‐2,3‐dicarboxyclic tert‐butylester] was transformed into the free acidic block by cleavage of the tert‐butyl groups using trifluoroacetic acid. Micellar solutions were prepared by dialysis, dissolving the copolymers in dimethyl sulfoxide which was subsequently replaced by water. All polymers form micelles with radii between 10 and 20 nm at a pH‐value below 5, where the carboxylic acid groups are in the protonated state. The block copolymer micelles show a strong increase of the hydrodynamic radius with increasing pH‐value, due to the repulsion among the formed carboxylate anions resulting in a stretching of the polymer chains. In this state, the micelles exhibit responsive behavior to ionic strength where a contraction of the micelles is observed as the carboxylate charges are balanced by sodium ions, whereas no changes of the hydrodynamic radius on addition of salt are observed at low pH. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1178–1191, 2009  相似文献   

6.
We report the synthesis, micellar structures, and multifunctional sensory properties of new conjugated rod‐coil block copolymers, poly(3‐hexylthiophene)‐block‐poly(2‐(di methylamino)ethylmethacrylate)(P3HT‐b‐PDMAEMA). The new copolymers, synthesized by atom transfer radical polymerization of P3HT macroinitiator, consisted PDMAEMA coil lengths of 43, 65, and 124 repeating units. All the P3HT‐b‐PDMAEMA copolymers exhibit a similar low critical solution temperature in water around 33 °C. The micellar structures of the synthesized polymers were characterized by AFM, TEM, and dynamic light scattering, by varying temperature, pH, and water/THF composition. The micelles of P3HT20b‐PDMAEMA43 in water had a reversible size change from 75 ± 5 nm to 132 ± 5 nm on heating from 25 to 55 °C and reduced to the original size during cooling. In addition, the micellar size also showed a significant pH dependence, changing from 67 ± 8 nm (pH = 12) to 222 ± 6 nm (pH = 4), depending on the protonation of the PDMAEMA blocks and their electrostatic repulsion. The micellar structure of three P3HT‐b‐PDMAEMA copolymers changed from spheres, to vesicles, and finally to larger sphere micelles as the solvent composition varied from 0 to 100 wt % water in the mixed solvent. The different micellar structures of P3HT20b‐PDMAEMA43 solution led to a red‐shift on the absorption or photoluminescence spectra and exhibited the emission colors of yellow, orange, red, and dark red with increasing the water content. This study suggested that new copolymers had potential applications as multifunctional sensory materials toward temperature, pH, and solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

8.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

9.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

10.
Optically active poly(ethylene glycol) monomethyl ether‐b‐poly(methacryloyl‐L ‐leucine methyl ester) (denoted as MPEG‐b‐PMALM) copolymers were prepared via atom transfer radical polymerization (ATRP), using bromine (Br) end‐capped poly(ethylene glycol) monomethyl ether (denoted as MPEG‐Br) as macroinitiator in the presence of CuBr/tris(2‐dimethylaminoethy1)amine (Me6TREN) as catalytic system. Broad range of morphologies, such as spherical, cylindrical, and vesicular micelles, which were prepared by initially dissolving prepared polymer in organic solvent at different concentration followed by addition various amount of water before dialysis against water to remove any added solvent, was observed by transmission electron microscope (TEM). More detailed chiroptical properties of the micelles/aggregates in aqueous solution were evaluated by circular dichroism (CD) spectroscopy as a function of micelles morphologies, polymer concentration, solvents employed, temperature, etc. The micellar solutions exhibit almost the same CD spectra regardless of its morphologies. The intensity of the CD spectra of the cylindrical micelles decreased in the molar ellipticities as the micellar concentration in water was increased. The Cotton effect was markedly changed when the solvent hydrophobicity was changed by addition of trifluoromethyl ethanol (TFME) to water. The intensity of the CD spectra decreased not too much within the temperature range from 20 °C to 90 °C, indicating good stability of the micelles upon temperature variation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1345–1355, 2009  相似文献   

11.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(diethylamino)ethyl methacrylate) (PDEA) side chains, were synthesized by successive atom transfer radical polymerization (ATRP). The backbone was firstly prepared by sequential ATRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained diblock copolymer was transformed into macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was employed for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐(diethylamino)ethyl methacrylate)] (PNIPAM‐b‐(PEA‐g‐PDEA)) double hydrophilic graft copolymer. ATRP of 2‐(diethylamino)ethyl methacrylate was initiated by the macroinitiator at 40 °C using CuCl/hexamethyldiethylenetriamine as catalytic system. The molecular weight distributions of double hydrophilic graft copolymers kept narrow. Thermo‐ and pH‐responsive micellization behaviors were investigated by fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (≥32 °C); whereas, the aggregates turned into vesicles in basic surroundings (pH ≥ 7.2) at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5638–5651, 2008  相似文献   

12.
A kind of novel soft amphiphilic ABA triblock copolymers, poly(L ‐lysine)‐b‐poly(tetrahydrofuran)‐b‐poly(L ‐lysine), was synthesized by the anionic ring‐opening polymerization of ε‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride using amine‐terminated poly(tetrahydrofuran) as a macroinitiator and subsequent removal of the protecting group. The resulting copolymers possessing a nearly symmetrical and narrow molecular weight distribution were dissolved in water at an appropriate concentration range at room temperature to yield vesicles as confirmed by using negative stain TEM and DLS. Meanwhile, nanotubes were obtained as the result of the conjunction of vesicles by reducing the medium temperature as evidenced by TEM. The effect of pH and salt concentration variations on the self‐assembly behavior was also examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1042–1050, 2008  相似文献   

13.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

14.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) backbone and poly(2‐vinylpyridine) side chains, were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as the catalytic system. The obtained diblock copolymer was transformed into the macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was used for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐vinylpyridine)] double hydrophilic graft copolymer. ATRP of 2‐vinylpyridine was initiated by the macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as the catalytic system. The synthesis of both the backbone and the side chains are controllable. Thermo‐ and pH‐responsive schizophrenic micellization behaviors were investigated by 1H NMR, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (T ≥ 32 °C), whereas the aggregates turned into spheres with PEA‐g‐P2VP‐core accompanied with the lifting of pH values (pH ≥ 5.3) at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 15–23, 2010  相似文献   

15.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006  相似文献   

16.
A novel multifunctional amphiphilic graft copolymer has been synthesized consisting of a biodegradable poly(l ‐aspartic acid) backbone that was decorated by water‐soluble poly(ethylene glycol) (PEG) and pH‐responsive poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) side‐chains as well as thiol pendant groups. This graft copolymer together with doxorubicin (DOX) formed micelles in water at pH = 10.0 with PDEAEMA and DOX acting as the core and PEG serving as the micellar corona. Upon oxidation, the thiol groups dimerized to form disulfide bonds, thus “locking in” the micellar structure. These crosslinked micelles expanded as the pH was decreased from 7.4 to 5.0 or upon the addition, at pH = 7.4, of glutathione (GSH), a thiol‐containing oligopeptide that is present in cancerous cells and cleaves disulfide bonds. At pH = 5.0, GSH addition triggered the disassembly of the micelles. The expansion and disassembly of the micelles have been determined via in vitro experiments to evaluate their DOX release behavior. More importantly, the graft copolymer micelles could enter cells by means of endocytosis and deliver DOX to the nuclei of ovarian cancer BEL‐7402 cells. Thus, this polymer and its micelles are promising candidates for drug delivery applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1536–1546  相似文献   

17.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

18.
In this work the synthesis of poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PBA‐b‐PHEMAGl) diblock glycopolymer and poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate)‐b‐poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PHEMAGl‐b‐PBA‐b‐PHEMAGl) was performed via atom transfer radical polymerization. Monofunctional and difunctional poly(butyl acrylate) macroinitiators were used to synthesize the well‐defined diblock and triblock glycopolymers by chain extension reaction with the glycomonomer HEMAGl. The self‐assembly of these glycopolymers in aqueous solution was studied by dynamic light scattering and transmission electron microcopy, showing the coexistence of spherical micelles and polymeric vesicles. In addition, the biomolecular recognition capacity of these micelles and vesicles, containing glucose moieties in their coronas, was investigated using the lectin Concanavalin A, Canavalia Ensiformis, which specifically interacts with glucose groups. The binding capacity of Concanavalin A with glycopolymer is influenced by the copolymer composition, increasing with the length of HEMAGl glycopolymer segment in the block copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A series of pH/redox dual stimuli‐responsive poly(2‐methacryloyloxyethyl phosphorylcholine)25block‐poly(l ‐histidine)n (p[MPC])25b‐p[His]n, n = 20, 35, 50, and 75) copolymers consisting of a pH‐responsive p(His)n block and a biocompatible phospholipid analog p(MPC) block connected by a redox‐responsive disulfide linker have been synthesized. The block copolymers are self‐assembled into uniform micelles (~100 nm) in which doxorubicin (Dox) is efficiently encapsulated. The in vitro release profile shows an enhanced release of Dox at low pH (5.0) in 10 mM glutathione (GSH). The in vitro cell viability assays performed using various cell lines show that the blank hybrid micelles have no acute or intrinsic toxicity. A pH‐dependent cytotoxicity is observed with the Dox‐loaded micelles, especially at pH 5.0. Moreover, confocal microscopy images and flow cytometry results show the pH‐dependent cellular uptake of Dox‐loaded micelles. Therefore, the Dox‐loaded micelles can be considered a good candidate for cancer therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2061–2070  相似文献   

20.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号