首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
《Physics letters. A》2019,383(18):2229-2234
In this work, the exchange bias behavior and magnetocaloric effect have been studied in Mn7Sn4 alloy. The X-ray powder diffraction pattern recorded at room temperature indicates that the sample crystallizes in a single phase with Ni2In-type hexagonal structure (space group P63/mmc). The maximum magnetic entropy change value across paramagnetic/ferrimagnetic transition is about 3.3 J kg−1 K−1 under the magnetic field change of μ0ΔH=0-5T. With further cooling, the reentrant spin-glass-like state is obtained below 150 K, for which the exchange bias effect has been observed. The exchange bias field is ∼7.8 mT and ∼6.7 mT at T=10K when the cooling field is μ0HCF=0.1T and 0.5 T, respectively. The magnetic behavior and the origin of exchange bias in Mn7Sn4 are discussed.  相似文献   

5.
We consider a superconducting spin valve in multiply connected superconductor-ferromagnet hybrid geometry such as a superconducting ring enclosed a ferromagnetic metal, in the framework of linearized Usadel equations. We simplify our model by considering the presence of the exchange field in the superconducting ring which allows us to manipulate magnetization orientations in parallel or antiparallel configurations by switching the weaker exchange field. In such geometry the superconducting ground state is activated to higher orbital states characterized by the nonvanishing vorticity parameters L which will be the energetically favorable superconducting state in some ranges of the proximity superconductor-ferromagnet region. The competing effects caused by the exchange interactions and the orbital effect, are analyzed through the nonmonotonic dependence of the superconducting critical temperature Tc on the radius df of the ferromagnetic core. The analytic Tc(df) formula is obtained within the single mode approach and the analysis of the spin switch effect is given.  相似文献   

6.
《Physics letters. A》2020,384(9):126186
The phase diagrams and magnetic properties of double perovskite Sr2CrIrO6 have been studied by using Monte Carlo simulation based on the heat bath algorithm. The ground-state diagrams of the compound Sr2CrIrO6 have been calculated for different combinations of system parameters. The diagrams obtained are very rich and they give an idea of all the most stable configurations. The effects of the exchange interactions and the crystal field on the phase diagrams and magnetic properties of the system have been examined. A number of interesting phenomena have been observed such as the compensation temperature, the first and second order phase transitions, the critical triple point and the terminal critical point.  相似文献   

7.
8.
9.
10.
S. Nazir 《Physics letters. A》2019,383(16):1977-1982
Interfacial magnetism and magnetic anisotropy constant (Ki) in Co/MgO heterostructure have been studied using ab-initio density functional calculations. It is found that interfacial Co spin magnetic moment shows a strong interdependence on Co-O bond lengths and a reasonable spin-polarization of ~80% is established as a function of Co layers. Our results revealed a saturated positive (out-of-plane) Ki of +2.80 mJ/m2 at ≥12 Co layers (~1.6 nm Co thickness), which is associated with orbital magnetic moment difference in [100] and [001] direction along with a strong hybridization between dxy and dx2?y2 orbitals through orbital angular momentum operator Lz?. Furthermore, it is shown that the Ki magnitude almost remains constant and weakens in the case of under- and over-oxidations in the interfacial MgO and Co layers, respectively. Interestingly, Ki improved for oxygen migrated interface due to enhanced dxy and dx2?y2 orbitals coupling. The disordered interfaces stability is checked by analyzing the formation energy. Hence, the present findings disclose that the higher Co thickness in ordered Co/MgO structure supports to out-of-plane [001] (positive) Ki, which could be useful for its technological implementation in high-density magnetic data storage devices with high thermal stability.  相似文献   

11.
12.
In the present work are reported the stress annealing (SA) effect on magnetic properties of Fe–Al–B alloys and the result on the piezomagnetic coefficient d33?=dB/dσ|H, where σ is the applied stress, B is the magnetic induction and H is the applied magnetic field. The objective is to evaluate the potential use of these alloys as smart materials of force sensors. The study comprises two alloys with compositions (Fe0.87Al0.13)98.4B1.6 (Al13) and (Fe0.82Al0.18)98.4B1.6 (Al18). The microstructure, hysteresis loops and B vs. σ|H were analyzed before and after the SA. Regarding the force sensitivity, the SA increased the piezomagnetic coefficient d33? due the introduction of an extrinsic anisotropy in both Fe–Al–B alloys. Moreover, the stress range, in which the piezomagnetic coefficient d33? is linear, is higher after the SA. Concerning the single phase (Fe0.87Al0.13)98.4B1.6 alloy, the force/pressure sensitivity and the linear stress range increase up to 16.8% and 47.1%, respectively. For the two phase (Fe0.82Al0.18)98.4B1.6 alloy, the increase was a bit higher, but the curves B vs. σ are hysteretic, spoiling the use of this material as a force sensor component.  相似文献   

13.
The behavior of Al2O3/Al composite coated Al electrodes fabricated by surface mechanical alloying ‘SMA’ was studied. The work was accomplished using Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques in alkaline media 2MKOH were done at room temperature. Results show hydroxyl ions accumulate on the surface due to Al deformation micro cavities filling with Al2O3 until full charge blockage reached. A barrier cover layer development causing an increase of both resistance and capacitance as it becomes more stable and thinner with exposure time increase. Migrating hydroxyl ion inside micro cavity changed its composition from Al2O3 to stable tetrahedral Al(OH)4? aluminate ions. Therefore future benefits could be reached by developing such surfaces having charge accumulation that enables environmental interaction.  相似文献   

14.
15.
16.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

17.
18.
An investigation into the superconducting order parameter thermodynamic fluctuations and their manifestations on paraconductivity in cuprate superconductors is done using a renormalized Gaussian approach based on the Ginzburg–Landau theory. The temperature dependence of paraconductivity is affected by repulsive interactions between Cooper pairs and does not follow the universal power laws predicted by the conventional Aslamazov–Larkin theory. In addition to the well known Lawrence–Doniach crossover from three to two dimensions, we also highlight the crossover from one-dimensional to two-dimensional behavior and the crossover from weak two-dimensional to strong two-dimensional critical behavior in the vicinity of the critical temperature. These dimensional crossovers result from the resistance between Cooper pairs due to critical and thermal fluctuations which cause a transition from a metastable state to one with a smaller current. Two illustrative examples (the cases of YBa2Cu3O6.9 and Bi2Sr2CaCu30x compounds) are provided in support of the analysis, so as to demonstrate the usefulness of the approach.  相似文献   

19.
The magnetic properties of tetragonal structure of stoichiometric NiMn alloy is investigated using density functional theory within the local spin density approximation. The system studied here, is a free standing film. The effect of thickness and epitaxial strain on the magnetic and structural properties is examined. It is found that while the magnetic moments of Mn surface atoms vary depending on the number of layers being odd (3.60 μB) or even (3.55 μB) the magnitude of the magnetic moment for surface Ni atoms is constant (0.11 μB). By applying epitaxial strain on the slabs, it was observed, for the first time, that the magnetic phase of NiMn films changes from “A-type-like” ferrimagnetic for compressive strains to “G-type-like” ferrimagnetic for tensile strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号