首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non‐resonant inelastic X‐ray scattering of core electrons is a prominent tool for studying site‐selective, i.e. momentum‐transfer‐dependent, shallow absorption edges of liquids and samples under extreme conditions. A bottleneck of the analysis of such spectra is the appropriate subtraction of the underlying background owing to valence and core electron excitations. This background exhibits a strong momentum‐transfer dependence ranging from plasmon and particle–hole pair excitations to Compton scattering of core and valence electrons. In this work an algorithm to extract the absorption edges of interest from the superimposed background for a wide range of momentum transfers is presented and discussed for two examples, silicon and the compound silicondioxide.  相似文献   

2.
The design, construction and commissioning of a beamline and spectrometer for inelastic soft X‐ray scattering at high resolution in a highly efficient system are presented. Based on the energy‐compensation principle of grating dispersion, the design of the monochromator–spectrometer system greatly enhances the efficiency of measurement of inelastic soft X‐rays scattering. Comprising two bendable gratings, the set‐up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin‐flip, dd and charge‐transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set‐up in terms of full width at half‐maximum is 108 meV at an incident photon energy tuned about the Ni L3‐edge.  相似文献   

3.
The L‐shaped laterally graded multilayer mirror is a vital part of the ultrahigh‐energy and momentum‐resolution inelastic X‐ray scattering spectrometer at the National Synchrotron Light Source II. This mirror was designed and implemented as a two‐dimensional collimating optic for the analyzer system. Its performance was characterized using a secondary large‐divergence source at the 30‐ID beamline of the Advanced Photon Source, which yielded an integrated reflectivity of 47% and a collimated beam divergence of 78 µrad with a source size of 10 µm. Numerical simulations of the mirror performance in tandem with the analyzer crystal optics provided details on the acceptance sample volume in forward scattering and defined the technical requirements on the mirror stability and positioning precision. It was shown that the mirror spatial and angular stability must be in the range <8.4 µm and <21.4 µrad, respectively, for reliable operation of the analyzer.  相似文献   

4.
5.
An X‐ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back‐scattering spectrometers using ≤10 keV X‐rays, a spectrometer utilizing ~20 keV X‐rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band‐pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K‐edge in SiO2 glass and crystal (α‐quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre‐edge curve based on a theoretical Compton profile and a Monte Carlo multiple‐scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high‐pressure studies.  相似文献   

6.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

7.
X‐ray free‐electron lasers (XFELs) generate sequences of ultra‐short spatially coherent pulses of X‐ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E? 2 × 10?6, is proposed. This is much better than for most modern X‐ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single‐crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.  相似文献   

8.
An end‐station for X‐ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end‐station is dedicated to the study of shallow core electronic excitations using non‐resonant inelastic X‐ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X‐ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end‐station provides an unprecedented instrument for X‐ray Raman scattering, which is a spectroscopic tool of great interest for the study of low‐energy X‐ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.  相似文献   

9.
10.
A single‐crystal momentum‐resolved resonant inelastic X‐ray scattering (RIXS) experiment under high pressure using an originally designed diamond anvil cell (DAC) is reported. The diamond‐in/diamond‐out geometry was adopted with both the incident and scattered beams passing through a 1 mm‐thick diamond. This enabled us to cover wide momentum space keeping the scattering angle condition near 90°. Elastic and inelastic scattering from the diamond was drastically reduced using a pinhole placed after the DAC. Measurement of the momentum‐resolved RIXS spectra of Sr2.5Ca11.5Cu24O41 at the Cu K‐edge was thus successful. Though the inelastic intensity becomes weaker by two orders than the ambient pressure, RIXS spectra both at the center and the edge of the Brillouin zone were obtained at 3 GPa and low‐energy electronic excitations of the cuprate were found to change with pressure.  相似文献   

11.
Transmission X‐ray mirrors have been fabricated from 300–400 nm‐thick low‐stress silicon nitride windows of size 0.6 mm × 85 mm. The windows act as a high‐pass energy filter at grazing incidence in an X‐ray beam for the beam transmitted through the window. The energy cut‐off can be selected by adjusting the incidence angle of the transmission mirror, because the energy cut‐off is a function of the angle of the window with respect to the beam. With the transmission mirror at the target angle of 0.22°, a 0.3 mm × 0.3 mm X‐ray beam was allowed to pass through the mirror with a cut‐off energy of 10 keV at the Cornell High Energy Synchrotron Source. The energy cut‐off can be adjusted from 8 to 12 keV at an angle of 0.26° to 0.18°, respectively. The observed mirror transmittance was above 80% for a 300 nm‐thick film.  相似文献   

12.
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences.  相似文献   

13.
An end‐station for resonant inelastic X‐ray scattering and (resonant) X‐ray emission spectroscopy at beamline ID20 of ESRF – The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high‐energy‐resolution applications, including partial fluorescence yield or high‐energy‐resolution fluorescence detected X‐ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non‐resonant inelastic X‐ray scattering measurements of valence electron excitations.  相似文献   

14.
The contrast mechanism for imaging molecular‐scale features on solid surfaces is described for X‐ray reflection interface microscopy (XRIM) through comparison of experimental images with model calculations and simulated measurements. Images of elementary steps show that image contrast is controlled by changes in the incident angle of the X‐ray beam with respect to the sample surface. Systematic changes in the magnitude and sign of image contrast are asymmetric for angular deviations of the sample from the specular reflection condition. No changes in image contrast are observed when defocusing the condenser or objective lenses. These data are explained with model structure‐factor calculations that reproduce all of the qualitative features observed in the experimental data. These results provide new insights into the image contrast mechanism, including contrast reversal as a function of incident angle, the sensitivity of image contrast to step direction (i.e. up versus down), and the ability to maximize image contrast at almost any scattering condition defined by the vertical momentum transfer, Qz. The full surface topography can then, in principle, be recovered by a series of images as a function of incident angle at fixed momentum transfer. Inclusion of relevant experimental details shows that the image contrast magnitude is controlled by the intersection of the reciprocal‐space resolution function (i.e. controlled by numerical aperture of the condenser and objective lenses) and the spatially resolved interfacial structure factor of the object being imaged. Together these factors reduce the nominal contrast for a step near the specular reflection condition to a value similar to that observed experimentally. This formalism demonstrates that the XRIM images derive from limited aperture contrast, and explains how non‐zero image contrast can be obtained when imaging a pure phase object corresponding to the interfacial topography.  相似文献   

15.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Charge transfer multiplet (CTM) theory is a computationally undemanding and highly mature method for simulating the soft X‐ray spectra of first‐row transition metal complexes. However, CTM theory has seldom been applied to the simulation of excited‐state spectra. In this article, the CTM4XAS software package is extended to simulate M2,3‐ and L2,3‐edge spectra for the excited states of first‐row transition metals and also interpret CTM eigenfunctions in terms of Russell–Saunders term symbols. These new programs are used to reinterpret the recently reported excited‐state M2,3‐edge difference spectra of photogenerated ferrocenium cations and to propose alternative assignments for the electronic state of these cations responsible for the spectroscopic features. These new programs were also used to model the L2,3‐edge spectra of FeII compounds during nuclear relaxation following photoinduced spin crossover and to propose spectroscopic signatures for their vibrationally hot states.  相似文献   

17.
Silicon saw‐tooth refractive lenses have been in successful use for vertical focusing and collimation of high‐energy X‐rays (50–100 keV) at the 1‐ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration‐free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single‐crystal material (i.e. Si) minimizes small‐angle scattering background. The focusing performance of such saw‐tooth lenses, used in conjunction with the 1‐ID beamline's bent double‐Laue monochromator, is presented for both short (~1:0.02) and long (~1:0.6) focal‐length geometries, giving line‐foci in the 2 µm–25 µm width range with 81 keV X‐rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short‐focal‐length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw‐tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small‐angular‐acceptance high‐energy‐resolution post‐monochromator in the 50–80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre‐monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance‐preserving to a very high degree.  相似文献   

18.
19.
X‐ray absorption spectra calculated within an effective one‐electron approach have to be broadened to account for the finite lifetime of the core hole. For methods based on Green's function this can be achieved either by adding a small imaginary part to the energy or by convoluting the spectra on the real axis with a Lorentzian. By analyzing the Fe K‐ and L2,3‐edge spectra it is demonstrated that these procedures lead to identical results only for energies higher than a few core‐level widths above the absorption edge. For energies close to the edge, spurious spectral features may appear if too much weight is put on broadening via the imaginary energy component. Special care should be taken for dichroic spectra at edges which comprise several exchange‐split core levels, such as the L3‐edge of 3d transition metals.  相似文献   

20.
For spectral imaging of chemical distributions using X‐ray absorption near‐edge structure (XANES) spectra, a modified double‐crystal monochromator, a focusing plane mirrors system and a newly developed fluorescence‐type X‐ray beam‐position monitoring and feedback system have been implemented. This major hardware upgrade provides a sufficiently stable X‐ray source during energy scanning of more than hundreds of eV for acquisition of reliable XANES spectra in two‐dimensional and three‐dimensional images. In recent pilot studies discussed in this paper, heavy‐metal uptake by plant roots in vivo and iron's phase distribution in the lithium–iron–phosphate cathode of a lithium‐ion battery have been imaged. Also, the spatial resolution of computed tomography has been improved from 70 nm to 55 nm by means of run‐out correction and application of a reconstruction algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号